// TIMER def queryTimeDFIter(q: DataFrame, nbIter: Int): Unit = { var l = new scala.collection.mutable.ArrayBuffer[Double](nbIter) for( i <- 1 to nbIter) { var start = java.lang.System.currentTimeMillis(); var c = q.count var t = (java.lang.System.currentTimeMillis() - start).toDouble /1000 l.append(t) println("") println(s"Count=$c, Time= $t (s)") } val avg = l.reduce(_+_).toDouble/l.size println(s"AVERAGE time for ${l.size} values is: $avg") } // define VPs to be loaded //------------------------- val nbP = dictP.count.toInt val r = (0 to nbP-1) // SPECIFY THE PARTITIONING : either default or subject based // ------------------------ // Default partitioning (s,o) val VP2Random = r.map(i => (i, sqlContext.read.parquet(vpDir + "/p" + i).repartition(NB_FRAGMENTS) )).toMap // Partitioning by SUBJECT (s) val VP2 = r.map(i => (i, sqlContext.read.parquet(vpDir + "/p" + i).repartition(NB_FRAGMENTS, col("s")) )).toMap // load VP sizes val VP2Size = sqlContext.read.parquet(vpDir + "/size").collect.map(r => (r.getLong(0).toInt, r.getLong(1))).toMap val nameSpace = Map( "dc" -> "http://purl.org/dc/terms/", "foaf" -> "http://xmlns.com/foaf/", "gr" -> "http://purl.org/goodrelations/", "gn" -> "http://www.geonames.org/ontology#", "mo" -> "http://purl.org/ontology/mo/", "og" -> "http://ogp.me/ns#", "rev" -> "http://purl.org/stuff/rev#", "rdf" -> "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdfs" -> "http://www.w3.org/2000/01/rdf-schema#", "sorg" -> "http://schema.org/", "wsdbm" -> "http://db.uwaterloo.ca/~galuc/wsdbm/") def getIdP(prefix: String, p: String):Int = { val ns = nameSpace.get(prefix).get val full = ns + p return dictP.where(s"p = '<$full>'").take(1).head.getLong(1).toInt } def getIdSO(prefix: String, s: String): Long = { val ns = nameSpace.get(prefix).get val full = ns + s return dictSO.where(s"so = '<$full>'").take(1).head.getLong(1) }
case class v(n:Int) def sparqlSplit(sparql: List[(Any, String, Any)]): List[(Any, (String, String), Any)] = { return sparql.map{case(s,p,o)=>(s,p.split(":"),o)}.map{case(s,p,o)=>(s,(p(0), p(1)), o)} } //persist VPs accessed by a query q def persistQueryVP(q: List[(Any, (String, String), Any)], vps: Map[Int,org.apache.spark.sql.DataFrame])={ q.map{case(_,(ns,p),_) => vps(getIdP(ns, p)).persist().count} } // encode properties and literals in a query def sparqlEncode(splittedSparql: List[(Any, (String, String), Any)]): List[(Any, Int, Any)] = { return splittedSparql.map{ case (s,(ns,p),o) => val idP = getIdP(ns, p) (s, o) match { case(v(a), v(b))=> (v(a), idP, v(b)) case(lit:String, v(b)) => { val idLit = getIdSO(lit.split(":")(0), lit.split(":")(1)) (idLit, idP, v(b))} case(v(a), lit:String) => { val idLit = getIdSO(lit.split(":")(0), lit.split(":")(1)) (v(a), idP, idLit)} }}} // generate selection operator for each triple pattern def tpOperators(encodedQuery: List[(Any, Int, Any)], d: Map[Int, DataFrame]) = encodedQuery.map{ case(v(a), p, v(b))=> ( (v(a), p, v(b)), d(p).withColumnRenamed("o", s"v$b")) case(lit, p, v(b))=> ( (lit , p, v(b)), d(p).where(s"s=$lit").select("o").withColumnRenamed("o", s"v$b")) case(v(a), p, lit) => ( (v(a), p, lit ), d(p).where(s"o=$lit").select("s")) }