• Aller au contenu

Bases de Données / Databases

Site Web de l'équipe BD du LIP6 / LIP6 DB Web Site

Outils pour utilisateurs

  • S'identifier

Outils du site

Piste:

case

Recherche

Voici les résultats de votre recherche.

Résultats

RDFdist : RDF distribution approaches using Spark: 125 Occurrences trouvées
Partitioner(part)) // val triples = triples0.map{case(f,(s,p,o))=>((s+p+o),(s,p,o))}.partitionBy(new Ha... "+part+" partitions"); val oDist = triples.map{ case(f,(s,p,o)) => (f,1)}.reduceByKey( (a,b) => a+b) val oMean = oDist.map{case(f,c)=>c}.sum / machine val odevs = oDist.map{case(f,c)=>c}.map(score => (score - oMean) * (score - oMea
RDFdist: 125 Occurrences trouvées
Partitioner(part)) // val triples = triples0.map{case(f,(s,p,o))=>((s+p+o),(s,p,o))}.partitionBy(new Ha... "+part+" partitions"); val oDist = triples.map{ case(f,(s,p,o)) => (f,1)}.reduceByKey( (a,b) => a+b) val oMean = oDist.map{case(f,c)=>c}.sum / machine val odevs = oDist.map{case(f,c)=>c}.map(score => (score - oMean) * (score - oMea
Chain6 query plans: 17 Occurrences trouvées
SPARQL RDD: <code scala> val d1 = triples.filter{case(s,(p,o))=> p==P1}.map{case(x1,(p, x2))=> (x2, x1)} val d2 = triples.filter{case(s,(p,o))=> p==P2}.mapValues{case(p,x3) => x3} val d3 = triples.filter{case(s,(p,o))=> p==P3}.mapValues{
Chain4 query plans: 11 Occurrences trouvées
SPARQL RDD: <code scala> val d1 = triples.filter{case(s,(p,o))=> p==P1}.map{case(x1,(p, x2)) => (x2, x1)} val d2 = triples.filter{case(s,(p,o))=> p==P2}.mapValues{case(p,x3) => x3} val d3 = triples.filter{case(s,(p,o))=> p==P3}.mapValues{
Utilities: 11 Occurrences trouvées
} </code> === QUERY utilities === <code scala> case class v(n:Int) def sparqlSplit(sparql: List[(An... , (String, String), Any)] = { return sparql.map{case(s,p,o)=>(s,p.split(":"),o)}.map{case(s,p,o)=>(s,(p(0), p(1)), o)} } //persist VPs accessed by a query... Map[Int,org.apache.spark.sql.DataFrame])={ q.map{case(_,(ns,p),_) => vps(getIdP(ns, p)).persist().count
WatDiv Query C3 plans: 8 Occurrences trouvées
"givenName")) //persist all C3 VPs c3AllProp.map{case(ns, p) => VP2Random(getIdP(ns, p)).persist().coun... by increasing tp size val order = c3AllProp.map{ case(ns,p) => (p, getIdP(ns,p), VP2Size.get(getIdP(ns,p)).get)}.sortBy{case (p, idp, s)=> s} order.foreach(println) /* (Locat... ("wsdbm", "friendOf")) val l1 = orderedList.map{case(ns, p) => { val idP = getIdP(ns, p) VP2EXP(id
WatDiv Query S1 plans: 8 Occurrences trouvées
("gr", "price")) val triples = orderedProp.map{case(ns, p) => { val idP = getIdP(ns, p) DATA.wher... ("gr", "price")) val triples = orderedProp.map{case(ns, p) => { val idP = getIdP(ns, p) DATA.wher... ("sorg", "priceValidUntil")) val tpSize = tp.map{case(ns, p) => (p, getIdP(ns,p), VP2Size.get(getIdP(ns, p)).get)}.sortBy{case (p, idp, size)=> size} val selections = tpSize.ma
Supports Cours: 6 Occurrences trouvées
,Manufacturer#1,Brand#13,LARGE BRUSHED BRASS,1,LG CASE,902.00,final platelets hang f </code> En étant da... b.reduce(_+_)/tab.size val inner = lineitem .map{case(partkey,quantity,_)=>(partkey,quantity)} .groupB... lues(x=>.2*myAvg(x)) val outer = lineitem .map{case(partkey,quantity,extended)=>(partkey,(quantity,extended))} .join(part.map(x=>(x,null))) .map{case(partkey,((quantity,extended),_))=>(partkey,(quant
WatDiv Query F5 plans: 6 Occurrences trouvées
("s") val tp1a = t1.unionAll(e1) val l1 = s1.map{case(ns, p) => { val idP = getIdP(ns, p) DATA.wher... thColumnRenamed("o", s"o$idP")}} val l2 = s2.map{case(ns, p) => { val idP = getIdP(ns, p) DATA.wher... ("o").withColumnRenamed("o","s") val l1 = s1.map{case(ns, p) => { val idP = getIdP(ns, p) VP2EXP(id... ).withColumnRenamed(s"o$v1","s") val l2 = s2.map{case(ns, p) => { val idP = getIdP(ns, p) VP2EXP(id
[TME II-1] Introduction à Spark (Algèbre RDD): 6 Occurrences trouvées
eur identifié par son UserID val q2a = notes.map{case(userId,movieId,rating,ts)=>(userId,1)}.reduceByKe... ation donnée par le Zip-code val q2b = utilis.map{case(userId,gender,age,occup,zipcode)=>(userId,zipcode)} join(notes.map{case(userId,movieId,rating,ts)=>(userId,1)}) map{case (userId,(zipcode, nb))=>(zipcode, 1)} reduceByKey(_+_)
SnowFlake query Q8 plans: 5 Occurrences trouvées
tById.count val conceptByName = conceptById.map{ case (id, (name, start, length)) => (name, (id, start,... .count val propertyByName = propertyById. map{ case (id, (name, start, length)) => (name, (id, start,... aFrame contenant les données val d = triples.map{case(s,(p,o))=> (s,p,o)}.toDF("subject", "predicate", ... oupBy(x => x.getLong(0)) val c = b.flatMap{ case (s, rowList) => { // on sait qu'il y a a
Ancien TME 2016: Jointure parallèle: 5 Occurrences trouvées
,date) val jointureParDiffusion = RATINGSRDD.map{ case( user, N) => (user, N, UsersDiffusion.value(user)... 18 ans : <code scala> val U18 = USERSRDD.filter{ case(numU, (genre, age, profession, ville)) => age == ... (U18.collect.toMap) val j18 = RATINGSRDD.flatMap{ case(numU, note) => { U18Diffusion.value.get(numU) match { case Some(user) => Seq((numU,note,user)) case None
TME Données réparties et jointure parallèle: 5 Occurrences trouvées
lasses et Fonctions auxiliaires==== <code scala> case class Triplet(sujet: String, prop: String, objet:... sujet (s1=s2) val jointureParBroadcast = T2.map{ case(s2,o2) => (s2, o2, dicoReplique.value(s2)) } joi... c.broadcast(T1.collect.toMap) val J = T2.flatMap{ case(s2,o2) => { dicoReplique.value.get(o2) match { case Some(o1) => Seq((s2,o2, o1)) case None => Seq
EPIQUE Project Description: 4 Occurrences trouvées
rs of science involved in the project will design case studies (esp. in biology, ecology, economics) of ... f “diversity” or of “function” in ecology); those case studies will in turn contribute to fine-tune the ... ogy. Sociologists and historians have indeed good case studies on the building, structure and dissipatio... ocus was not on efficiency and interaction in the case of large corpora. ==== Patent mining and visual
EPIQUE Project Description: 4 Occurrences trouvées
Oracle avec SQLWorkbench: 4 Occurrences trouvées
Star shape query plans: 4 Occurrences trouvées
[Pré-requis] Introduction à Scala: 3 Occurrences trouvées
Recueil d'examens: 3 Occurrences trouvées
TME PL/SQL: 2 Occurrences trouvées
Loading WatDiv Dataset: 2 Occurrences trouvées
TME XQuery: 1 Occurrences trouvées
Economical context : the "Bloggy" Web: 1 Occurrences trouvées
Project description: 1 Occurrences trouvées
Mobility for epidemiology: 1 Occurrences trouvées
TME 8 JDBC (ancien): 1 Occurrences trouvées
Topic Extraction and Alignment for Large Scientific Document Collections: 1 Occurrences trouvées
TME XQuery : séance 1 (ancienne page): 1 Occurrences trouvées
TME 1 - SQL avancé sur la base Mondial: 1 Occurrences trouvées
[TME II-2] Algèbre Spark: Dataset: 1 Occurrences trouvées

Outils de la page

  • Anciennes révisions
  • Renommer la page
  • Haut de page
Sauf mention contraire, le contenu de ce wiki est placé sous les termes de la licence suivante : CC Attribution-Noncommercial-Share Alike 3.0 Unported
CC Attribution-Noncommercial-Share Alike 3.0 Unported Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki