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Abstract

Topic evolution analysis in scientific archives is a critical domain of research that focuses on
understanding how scientific topics evolve, emerge, or change over time. This thesis aims to take
advantage of advanced deep learning techniques to analyze large collections of time-stamped
scientific documents. By tracking the temporal progression of semantically similar documents
and their citation relationship, we contribute to this line of research by identifying evolving
topics, detecting emerging areas of interest, and observing shifts in scientific paradigms. Our
objectives include establishing new baselines for fundamental concepts like "topic" and "evolving
topics," developing novel methods for detecting emerging topics and paradigm shifts, and creating
improved evaluation metrics for topic models. By addressing challenges such as the difficulty
in defining complex notions, lack of standard categorization, and absence of reliable evaluation
metrics, this research seeks to push the boundaries of scientific discovery and innovation, providing
more nuanced and accurate insights into the evolution of scientific knowledge. This analysis
provides valuable insights into the dynamic nature of scientific knowledge, revealing patterns such
as emerging topics, integration of insights from different fields, and the rise or decline of specific
research areas. The experiments conducted throughout this research have led to the development
of several software tools, each designed to address specific challenges in topic modeling and
topic evolution analysis. The Contextualized Topic Coherence (CTC) metrics, implemented as a
Python package, provide advanced methods for evaluating the interpretability of topic models by
leveraging contextual embeddings. The Aligned Neural Topic Models (ANTM) software facilitates
the exploration of evolving topics in large-scale text archives, integrating temporal information for
dynamic analysis. Additionally, the Automated Topic Emergence Monitoring (ATEM) framework
and the QuTE model, both implemented as Python-based tools, support the early detection of
emerging topics and the modeling of paradigm shifts, respectively.
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Résumé

L’analyse de l’évolution des sujets dans les archives scientifiques est un domaine de recherche
crucial qui se concentre sur la compréhension de l’évolution, de l’émergence ou du changement
des sujets scientifiques au fil du temps. Cette thèse vise à tirer parti des techniques avancées
d’apprentissage profond pour analyser de grandes collections de documents scientifiques horodatés.
En suivant la progression temporelle des documents sémantiquement similaires et de leurs relations
de citation, nous contribuons à cette ligne de recherche pour identifier les sujets en évolution,
détecter les nouvelles zones d’intérêt et observer les changements de paradigmes scientifiques. Nos
objectifs incluent l’établissement de nouvelles références pour des concepts fondamentaux comme
"sujet" et "sujets en évolution", le développement de nouvelles méthodes pour détecter les sujets
émergents et les changements de paradigmes, et la création de métriques d’évaluation améliorées
pour les modèles de sujets. En relevant des défis tels que la difficulté de définir des notions
complexes, le manque de catégorisation standard et l’absence de métriques d’évaluation fiables,
cette recherche cherche à repousser les limites de la découverte et de l’innovation scientifiques,
en fournissant des insights plus nuancés et précis sur l’évolution des connaissances scientifiques.
Cette analyse offre des insights précieux sur la nature dynamique des connaissances scientifiques,
révélant des schémas tels que les sujets émergents, l’intégration des insights provenant de différents
domaines et l’ascension ou le déclin de zones de recherche spécifiques. Les expériences menées
au cours de cette recherche ont conduit au développement de plusieurs outils logiciels, chacun
conçu pour relever des défis spécifiques en matière de modélisation des sujets et d’analyse de
l’évolution des sujets. Les métriques de Contextualized Topic Coherence (CTC), implémentées
sous forme de package Python, offrent des méthodes avancées pour évaluer l’interprétabilité des
modèles de sujets en utilisant des embeddings contextuels. Le logiciel Aligned Neural Topic
Models (ANTM) facilite l’exploration des sujets en évolution dans les archives textuelles à grande
échelle, en intégrant des informations temporelles pour une analyse dynamique. De plus, le cadre
Automated Topic Emergence Monitoring (ATEM) et le modèle QuTE, tous deux implémentés
sous forme d’outils basés sur Python, soutiennent respectivement la détection précoce des sujets
émergents et la modélisation des changements de paradigmes.
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Chapter

1
Introduction

The evolution of science is a dynamic process marked by the continuous emergence and trans-
formation of ideas and discoveries [1]. Studying science evolution provides valuable insights for
researchers to understand how scientific domains evolve. These insights have the potential to
transform the research landscape by promoting up-to-date knowledge and innovative research.
Additionally, understanding science evolution holds significant implications for research funding
and public policy decisions in both academic and industrial contextual settings [2].

Within this broader context, topic modeling plays a crucial role [3, 4], as highlighted in
numerous surveys [5]. Topic modeling refers to a statistical technique used to uncover abstract
themes from a corpus of text documents, such as scientific archives. Specifically, dynamic topic
models [6] enable the study of the evolution of scientific research topics over time.

The primary motivation behind this thesis is to leverage advanced topic modeling and large
language models to uncover complex notions of topic evolution and deepen our understanding
of the dynamics that shape scientific knowledge. These powerful methods offer unprecedented
capabilities for analyzing vast amounts of data, allowing us to gain insights that push the
boundaries of scientific discovery and innovation.

Chapter content
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . 3
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1.1 Motivation

Our understanding of the world and scientific knowledge is constantly evolving over time, and
the evolution of science has been studied by philosophers for centuries. For instance, Popper [7]
considers science evolution as a Bayesian inference process that updates the logical possibility of
falsification, whereas Kuhn [1] introduces the notion of paradigm shift, where science evolution is
a Darwinian selection process of theories. Paradigm shifts represent fundamental changes in the
underlying assumptions and methodologies of a particular field, driving the evolution of topics
and fostering the emergence of new research areas within scientific archives. Similarly, the concept
of emergence dates back at least to the time of Aristotle (Metaphysics) [8]: "... the totality is
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not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is
other than the sum of the parts. In science, the emergence of new research topics frequently
occurs through the subtle convergence of distinct research areas, resulting in the formation of
interdisciplinary fields with blurred boundaries. These phenomena are inherently part of social
science, as they reflect the collective efforts and interactions of researchers.

These philosophical theories attempt to explain the evolution of scientific domains and describe
their relations and interactions with different semantics. The ability to accurately categorize
and quantify these complex notions is crucial for understanding the trajectory of scientific
advancement, predicting future research trends, and informing science policy decisions. However,
these theories are limited in certain respects, highlighting the need for more comprehensive
analytical approaches.

The abstract nature of these philosophical models can make them difficult to empirically
validate with analytical methods on concrete data from scientific research and publications.
Capturing these notions within scientific archives involves leveraging advanced data mining
techniques, network analysis, and machine learning algorithms to detect evolution patterns within
the contents and connections. Additionally, incorporating expert knowledge and employing
multi-scale temporal analysis can help in distinguishing significant shifts from normal scientific
progress.

More recently, to capture and analyze these changes, researchers have turned to the analysis
of large scientific archives with advanced computational techniques. One widely used method
for analyzing how scientific knowledge evolves over time is Dynamic Topic Modeling [9]. This
approach, an extension of traditional topic models, identifies and tracks the progression of topics
over time by examining semantically similar documents within temporal archives. By capturing
these temporal dynamics, science evolution is mainly studied by topic evolution analysis [10]
which involves modeling and discovering how topics change, emerge, or fade over time from
time-stamped document collections [11].

1.2 Main Challenges

The dynamic nature of scientific knowledge, coupled with the vast and ever-growing corpus of
research, creates significant obstacles in accurately mapping and understanding the evolution of
science. This thesis addresses two main challenges in topic-based science evolution analysis as
follows.

Modeling Science Evolution A key challenge in analyzing the evolution of science within
scientific archives is developing effective models that can connect the information contained in
these archives to complex concepts such as research trend analysis, scientific emergence, and
paradigm shifts. These models must be capable of accurately representing the research activities
within scientific communities and domains, capturing the various research topics across different
time periods, and tracking their evolution, including semantic relationships like shared concepts
and citations. A crucial aspect of this challenge involves ensuring the quality of this representation,
including its precision, diversity, coherence, and completeness. Advanced techniques in text mining
and semantic analysis, such as dynamic topic models and citation network analysis, are essential
for overcoming this challenge.

Analysing Science Evolution The second challenge involves developing and implementing
new methods to analyze and empirically validate philosophical concepts related to science
evolution, such as topic emergence [12] and paradigm shifts [13]. Recent advancements in deep
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learning, particularly in graph neural networks [14] and Large Language Models (LLM) [15], offer
unprecedented opportunities to model or redefine these complex concepts in the context of science
evolution analysis. These advanced techniques can capture intricate patterns and relationships
within large datasets, providing a more nuanced understanding of how scientific knowledge evolves
and how new ideas emerge. The goal of this thesis is to leverage these advancements and establish
a baseline for these complex notions in the analysis of science evolution.

1.3 Objectives and Contributions

1.3.1 Formal Framework For Science Evolution Analysis.

The first objective of this thesis is to establish a formal framework for science evolution analysis.
This framework involves updating and refining concepts within topic modeling by introducing
new notions such as "evolving topic" and "contextualized topic coherence" for analyzing science
evolution. By incorporating recent advancements in deep learning, we aim to provide more accurate
and nuanced definitions that better capture the complex dynamics of scientific knowledge evolution.
This framework will serve as a robust foundation for further analysis and the development of
innovative methodologies in the field.

Contributions To achieve this, we propose ANTM, a dynamic topic model that leverages
Large Language Models (LLMs) and advanced clustering techniques to capture the temporal
dynamics of topics, providing insights into how they evolve and develop over time.

As a second contribution, we introduce CTC, a novel family of topic coherence metrics that
leverage LLMs for the more accurate evaluation of topic models. This approach improves our
ability to identify the best-performing models for specific scientific corpora and guides fine-tuning
for better results, potentially transforming topic modeling in scientific literature analysis.

1.3.2 Science Evolution Analysis.

The second objective of this thesis is to identify and analyze complex concepts in science evolution
analysis, such as topic emergence and paradigm shifts. This analysis consists of extracting
evolution patterns from complex temporal and semantic representations of topics and their
evolution, including the contents and the citation relationships.

Contributions To discover and analyze emerging topics, this thesis proposes ATEM, a novel
framework based on analyzing citation activity across evolving topics using dynamic graph
embedding techniques to represent dynamic citation contexts. By examining how documents
from different topics cite each other over time, ATEM can identify emerging topics that represent
new and increasingly prominent ideas or issues within specific fields or broader areas of interest.

Furthermore, we introduce QuTE, an innovative framework for modeling paradigm shifts in
scientific evolution. QuTE leverages Reinforcement Learning (RL) techniques, combining ATEM
with Q-Learning, to uncover the intricate dynamics of scientific evolution. This approach aims to
provide a deeper understanding of how paradigm shifts occur and evolve over time in scientific
research.

3
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1.4 Main contributions

CTC In Chapter 4, we introduce the Contextualized Topic Coherence (CTC) metrics, a set
of innovative evaluation metrics designed to assess the interpretability of topic models. These
metrics leverage contextual embeddings from state-of-the-art language models like BERT to assess
the semantic relatedness of words within a topic, providing a more nuanced and accurate measure
than traditional topic coherence metrics. We also benchmark various topic models, including
Latent Dirichlet Allocation (LDA) and Neural Topic Models, against standard datasets like the
20 Newsgroups and Wikipedia, demonstrating the superior performance of our CTC metrics in
capturing the semantic coherence of topics across different archives and models. As noted in
Section 1.7, these metrics are implemented as a Python Package and are available to the research
community.

ANTM In Chapter 6, we address the challenge of identifying evolving topics in large-scale
text archives by proposing a clustering-based dynamic topic model called Aligned Neural Topic
Models (ANTM). This model integrates temporal information into the topic modeling process,
allowing for the detection and tracking of topic evolution over time. By utilizing advanced
clustering algorithms and LLMs, ANTM can dynamically adapt to the emergence of new topics
and the decline of old ones, offering a more realistic and accurate depiction of topic dynamics. As
mentioned in Section 1.7, this model is implemented as a Python Package and is available to the
research community.

ATEM Chapter 9 presents the Automated Topic Emergence Monitoring (ATEM) framework,
which integrates dynamic graph embedding methods with LLMs to enable the early identification
of emerging topics. This model leverages the structural information of citation networks and
the semantic depth of language models to detect nascent research trends at their inception.
As mentioned in Section 1.7, this model is implemented as a Python-based framework and is
open-sourced for the research community.

QuTE Chapter 10 defines the concept of a paradigm shift in scientific domains and introduces
QuTE, a reinforcement learning-based framework that models topic evolution using Q-Learning.
QuTE quantifies and predicts the transition probabilities between evolving topics during paradigm
shift cycles, capturing the interplay between established paradigms and emerging ideas. By
integrating ATEM, QuTE efficiently explores the vast state space of scientific topics, with
Q-Learning enabling adaptive learning from observed patterns in the literature.

1.5 Thesis Structure

This thesis is structured into three parts, each focusing on different contributions to the field of
topic modeling and science evolution analysis.

Part I establishes a foundational understanding of baseline and state-of-the-art topic models
and topic modeling concepts, as discussed in Chapter 2. It further delves into topic evaluation
metrics in Chapter 3. Our contribution to this part is detailed in Chapter 4, where we introduce
the Contextualized Topic Coherence (CTC) metric. Part II focuses on dynamic topic models,
which are crucial for studying topic evolution. Chapter 5 reviews baseline models for dynamic
topic modeling, setting the stage for our contribution in Chapter 6, where we introduce the
Aligned Neural Topic Model (ANTM) that optimizes the discovery and analysis of evolving topics
over time. Part III explores topic evolution analysis in scientific archives, covered in Chapters 7
and 8. Our contributions in this part include the introduction of ATEM in Chapter 9 and
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the QuTE model in Chapter 10. And finally, we conclude the thesis in Chapter 11 with some
perspectives for future work.

1.6 List of Publications

• Hamed Rahimi, David Mimno, Jacob Hoover, Hubert Naacke, Camelia Constantin, and
Bernd Amann. 2024. Contextualized Topic Coherence Metrics. In Findings of the Associ-
ation for Computational Linguistics: EACL 2024, pages 1760–1773, St. Julian’s, Malta.
Association for Computational Linguistics.

• Rahimi, H., Naacke, H., Constantin, C., Amann, B. (2024). ANTM: Aligned Neural Topic
Models for Exploring Evolving Topics. In: Hameurlain, A., Tjoa, A.M., Akbarinia, R.,
Bonifati, A. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems LVI.
Lecture Notes in Computer Science, vol 14790. Springer, Berlin, Heidelberg.

• Rahimi, H., Naacke, H., Constantin, C., Amann, B. (2024). ATEM: A Topic Evolution Model
for the Detection of Emerging Topics in Scientific Archives. In: Cherifi, H., Rocha, L.M.,
Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX
NETWORKS 2023. Studies in Computational Intelligence, vol 1143. Springer, Cham.

ANTM and ATEM were presented at BDA 2023, and the demo software of ATEM has been
accepted for presentation at BDA 2024. Additionally, the work presented in Chapter 10 is being
prepared for submission.

1.7 List of Software

• Rahimi, H., Naacke, H., Constantin, C., Amann, B. (2023). ANTM: An aligned neural
topic model for exploring evolving topics [Computer software]. GitHub.

• Rahimi, H., Hoover, J. L., Mimno, D., Naacke, H., Constantin, C., Amann, B. (2023).
Contextualized topic coherence metrics [Computer software]. GitHub.

• Rahimi, H., Amann, B., Naacke, H., & Constantin, C. (2022). ATEM: A topic evolution
model for the detection of emerging topics in scientific archives [Computer software]. GitLab.
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Topic Modeling
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“ Individuals who break through by inventing a new paradigm
are almost always either very young men or very new to the
field whose paradigm they change. These are the men who,
being little committed by prior practice to the traditional
rules of normal science, are particularly likely to see that
those rules no longer define a playable game and conceive
another set that can replace them. ”Thomas S. Kuhn

Motivation

Understanding topic models is crucial for analyzing the evolution of science, as they offer powerful
tools for processing and interpreting large volumes of scientific literature. These models reveal
underlying themes, trends, and shifts in research priorities over time, helping to map the structure
and interconnectedness of scientific fields. By quantifying the prominence and progression of
various topics, topic models provide a data-driven perspective on scientific advancements and the
diffusion of ideas.

Organization

In this part of the manuscript, we begin by defining the concepts of topics and topic modeling
to establish a clear foundational understanding of these concepts in Chapter 2. In this chapter,
we categorize the various types of topic models and provide a structured and detailed overview
of the field. This categorization encompasses a range of models, from classical approaches to
the latest advancements, highlighting the diversity and evolution of topic modeling techniques.
We then delve into the methods used for evaluating topic models and critically assess existing
evaluation metrics in Chapter 7. This analysis is crucial as it sheds light on the strengths and
limitations of current evaluation methods, offering insights into their efficacy and areas where
they may fall short.

Contributions

We contribute to this part of the manuscript by introducing a novel family of topic coherence
metrics in Chapter 4, which utilize pre-trained Large Language Models (LLMs) to provide a more
nuanced understanding of language and context for assessing topic coherence.

This contribution is the result of a collaboration with David Mimno (Cornell University) and
Jacob Hoover (McGill University) and has been published in Hamed Rahimi, David Mimno, Jacob
Hoover, Hubert Naacke, Camelia Constantin, and Bernd Amann. 2024. Contextualized Topic
Coherence Metrics. In Findings of the Association for Computational Linguistics: EACL 2024,
pages 1760–1773, St. Julian’s, Malta.
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Chapter

2
Topic Models

In today’s era of big data, the ability to comprehend and interpret vast amounts of information
is essential for understanding the evolution of science. This capability enables researchers to
uncover hidden patterns, identify emerging trends, and gain insights that drive scientific discovery
and innovation. By analyzing large datasets effectively, the scientific community can map the
progression of knowledge, track the diffusion of ideas, and make informed decisions that shape the
future of research and technological advancement. Topic modeling provides a powerful method for
extracting critical information from large volumes of unstructured textual data, such as scientific
archives and social media posts.

Chapter content
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Probabilistic Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Neural Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Introduction

Topic modeling is a statistical technique that discovers abstract themes from a corpus of text
documents [4, 5]. Each topic represents a meaningful concept that can be understood through a
group of related words. For instance, a topic focused on transportation might be characterized by
words like car, bicycle, and airplane. We can define the topics of a corpus in a nutshell as follows.

Definition 2.1.1 (Topic). A topic t P T is a pair pDt,Wtq where Dt Ď D represents a subset of
semantically similar documents from the corpus D, and Wt Ď V is a weighted list of terms from
the vocabulary V of the corpus, which serves as the representation of topic t. Dt and Wt are
called, respectively, the topic cluster and the topic representation of topic t.

Figure 2.1 represents topics extracted from a corpus of documents using BERTopic [16] that
will be explained in Section 2.3.

This definition is applicable to the topics generated by any topic model extracted from a
document archive, regardless of the specific algorithm or approach used. It serves as a universal
framework for understanding how topic models function and what outputs they produce.

Definition 2.1.2 (Topic Model). A topic model is a computational method that identifies a set
of topics T within a corpus D. Each topic t P T is characterized by two key components:

• Topic-Document Distribution: A probability distribution P pd|tq over documents d P D,
given a topic t. This distribution assigns probabilities to each document in the corpus D,
indicating its relevance or membership probability in the cluster of topic t.
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Figure 2.1: Topics and Topic Representations [17]
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Figure 2.2: Components of Topic Models [4]

• Topic-Word Distribution: A probability distribution P pw|tq over words w P V from the
vocabulary V of the corpus, given a topic t. This distribution assigns probabilities to each
word in the vocabulary, reflecting its importance or contribution to the representation of
topic t.

As illustrated in Figure 2.2, topic modeling provides a structured way to discover and describe
the underlying thematic structure of a document corpus through these two components. Based
on the characteristics of the methodologies used to find these components [18], topic models are
widely categorized into Probabilistic Topic Models (PTM) [19, 20] and Neural Topic Models
(NTM) [16, 21–24]. PTMs are generative methods that use statistical inference to uncover latent
topic structures in document collections, simultaneously deriving topic-document distributions
P pd|tq and topic-word distributions P pw|tq from observed word frequencies. On the other hand,
NTMs take advantage of numerical optimization techniques and exploit recent neural network
approaches to represent topics as weighted word-vectors extracted from a set of semantically
similar documents. In the following sections, we will provide a detailed explanation of these
methods and introduce the most significant ones. We will also discuss their applications and
implications, highlighting their relevance and importance in the context of scientific research.

2.2 Probabilistic Topic Models

Conventional approaches to topic modeling, which embrace probabilistic graphical models such as
Latent Dirichlet Allocation (LDA) [19], have been extensively explored over the past two decades.
LDA is a popular generative probabilistic model for collections of discrete data such as text
corpora. It has found widespread use in natural language processing and information retrieval.

As shown in Figure 2.3, LDA identifies word-topic distribution and document-topic distribution
through a Bayesian inference process. Consider a corpus of D of M documents over a fixed
vocabulary containing V of N distinct terms. Let wdn P t1, . . . , V u denote the nth word in the
dth document. LDA models D through K topics, denoted as β1:K , where each topic βk is a
probability distribution over the vocabulary. For each document d, LDA defines a vector of
topic proportions, θd, where each component θdk indicates how prevalent the kth topic is in that

13
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Figure 2.3: LDA Graphical Model [3]

document. In the generative process of LDA, each word in a document is assigned to a topic k
with probability θdk, and the word itself is then drawn from the distribution βk associated with
that topic. The generative process for each document is as follows:

• 1. Draw topic proportions θd from a Dirichlet distribution.

θd „ Dirichletpαθq (2.1)

• 2. For each word n in the document:

– (a) Draw topic assignment zdn from the categorical distribution over topics.

zdn „ Catpθdq (2.2)

– (b) Draw the word wdn from the categorical distribution over the vocabulary.

wdn „ Catpβzdnq (2.3)

Here, Catp¨q denotes the categorical distribution. LDA also imposes a Dirichlet prior on the
topics, βk „ Dirichletpαβq. The concentration parameters αβ and αθ of the Dirichlet distributions
are model hyperparameters.

LDA has established itself as a leading method in topic modeling, and it has served as the
foundation for several advanced techniques that build upon its principles. For instance, [25]
propose a generative model based on LDA that mines distinct topics in document collections by
integrating the temporal ordering of documents into the generative process. This integration
improves identifying the best terms for representing each topic. However, LDA also faces
fundamental limitations. First, its static nature does not account for temporal information, such
as publication dates, reducing its ability to analyze topic evolution. Second, its bag-of-words
representation ignores the contextual semantics of words, which diminishes the precision and
interpretability of the generated topic representations. Finally, its implementation requires tuning
the optimal number of topics and involves iterative computation, which limits its applicability
to large document archives. These limitations hinder LDA’s capacity to accurately track and
understand how scientific fields develop and change over time. Researchers have proposed various
model structures derived from LDA, such as supervised LDA [26] or correlated LDA [27] to address
some of these issues such as scalability in handling large datasets. These models fundamentally
infer model parameters through Variational Inference [28] or Monte Carlo Markov Chain (MCMC)
methods such as Gibbs LDA [22].

Despite the achievements of these probabilistic methods, two notable limitations reduce the
scalability of probabilistic methods:

14
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Figure 2.4: The architecture of a VAE-based NTM [37]

1. Computation-intensive parameter inference: Probabilistic methods require intricate, model-
specific derivations for parameter inference, and as the model’s complexity grows, so does
the complexity of the inference process. This escalating complexity hinders their capacity
to adapt to a wide range of model structures and application scenarios [29].

2. Limited data-parallelism: Probabilistic inference algorithms generally do not naturally
support data parallelism for handling large document archives in a scalable way. Although
some parallel inference methods have been developed [30–32], these approaches are often
tailored to specific models and cannot be easily applied to different model structures or
various application contexts.

2.3 Neural Topic Models

Neural Topic Models (NTMs) employ neural networks to discover and represent topics in a
collection of documents. NTMs infer model parameters through automatic gradient back-
propagation by using deep neural networks to model latent topics [33]. Based on the types of
neural networks utilized in the structure of topic models, NTMs can be categorized into the
following classes [33].

VAE-based NTMs These models leverage the Variational Autoencoder (VAE) framework [34,
35], which consists of an encoder inference network and a decoder generation network to derive
topic-word and topic-document distributions, thereby exposing the underlying thematic structure
within a collection of documents. shown in Figure 2.4. ProdLDA [29] is the most popular model
of this category [36], in which the encoder infers document topic distributions from the documents,
while the decoder generates documents from these inferred topic distributions.

LDA-based NTMs These models combine the generative process of LDA with vector repre-
sentations of words [38, 39]. LDA-based NTMs define a topic using the embedding component
β “ WJT, where W P RDˆV denotes the word embeddings, and T P RDˆK represents the topic
embeddings, with D being the dimension of the embedding space [40].

The Embedded Topic Model (ETM) [41] is the most important model of this category that
improves the performance of topic models in terms of quality and predictive accuracy, especially
in the presence of large vocabularies. ETM leverages pre-trained word embeddings, such as
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Word2Vec [42] or GloVe [43], to initialize W . The notations and mathematical representation of
the generative process in ETM can be outlined as follows. Let ρ be an L ˆ V matrix containing
L-dimensional embeddings of the words in the vocabulary, with each column ρv P RL representing
the embedding of the vth term. ETM uses the embedding matrix ρ to define each topic βk;
specifically, it sets βk “ softmaxpρJαkq, where αk P RL is the embedding representation of
the kth topic, known as the topic embedding. By this, topic embeddings provide a distributed
representation of the topics in the semantic space of word embeddings. Finally, ETM incorporates
the obtained topic embeddings in its generative process, which is analogous to that of LDA:

• 1. Draw topic proportions θd „ LN pO, Iq.

• 2. For each word n in the document:

– (a). Draw topic assignment zdn „ Catpθdq.

– (b). Draw word wdn „ CatpsoftmaxpρJαzdnqq

The notation LN in Step 1 refers to the logistic-normal distribution [44], which transforms
Gaussian random variables to the simplex (the space where the components are non-negative and
sum to one). In using the word representations ρ1:V in the definition of β1:K , ETM learns the
topics of a corpus in a particular embedding space. The intuition behind ETM is that semantically
related words will be assigned to similar topics (since their embedding representations are close,
they will interact similarly with the topic embeddings α1:K).

Clustering-based NTMs Clustering-based topic models leverage word and document em-
bedding techniques and combine them with clustering algorithms to derive topic-document and
topic-word distributions based on document clusters [45].

Top2Vec [24] is the most important model of this category. A key advantage of Top2Vec is
that it does not require preprocessing steps such as stopword removal, stemming, or lemmatization.
Secondly, it autonomously determines the number of topics, their size, and the words representing
each topic. As shown in Figure 2.5, Doc2Vec [46] is utilized to generate word and document
embeddings. Given the sparsity of the vector space, dimension reduction is performed using
uniform manifold approximation and projection (UMAP) [47] before applying hierarchical density-
based spatial clustering of applications with noise (HDBSCAN) [48] to identify dense clusters of
documents. The centroid of document vectors in their original dimensions is then computed for
each dense region, defining the topic vector. The proximity of word vectors to document vectors
indicates the best descriptive words for a document’s topic, and the clustering of documents
signifies the number of topics.

LLM-based NTMs LLM-based topic models leverage transformer-based Large Language
Models (LLMs) [50], which are pre-trained on large-scale archives to capture contextual linguistic
features and to generate semantically rich and coherent topic models.

Several approaches combine Variational Autoencoders (VAEs), Large Language Models
(LLMs), and the Bag-of-Words (BoW) representation where a document is represented by a vector
of word frequencies, disregarding grammar and word order. For instance, the Contextualized Topic
Model (CTM) [51] integrates contextual document embeddings generated by Sentence-BERT [52]
with BoW features through concatenation to reconstruct the original BoW. Similarly, [53]
generates pseudo BoW representations using predictive word probabilities from BERT [15]. These
pseudo BoW representations are then exploited alongside the actual BoW to reconstruct both
the real and pseudo BoW, facilitating knowledge transfer from BERT to Neural Topic Models
(NTMs).
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Figure 2.5: Architecture of Top2Vec and BERTopic [49]

Another important LLM-based topic modeling method is BERTopic [54], which leverages
encoder-only transformers to encode documents into vector representations. BERTopic follows
the clustering-based architecture of Top2Vec [24] and employs advanced techniques to derive
topic-word distributions and topic-document distributions. As depicted on Figure 2.5, BERTopic
first encodes documents into high dimensional vector representations (encoding) using BERT [15]
and then reduces the dimension size by UMAP [47]. It then applies HDBSCAN [48] to extract
topic-document clusters and calculates the term vector representation (topic-word distribution)
via c-TF-IDF [55].

There are also LLM-based topic models that use decoder-only transformers, such as Chat-
GPT [56], employing a prompt-based framework to uncover latent topics in text collections. One
notable example is TopicGPT [57], which provides natural language labels and free-form descrip-
tions for topics, enhancing interpretability and aligning more closely with human categorizations.

RL-based NTMs Reinforcement Learning (RL) is a type of machine learning where an agent
learns to make decisions by performing actions in an environment to maximize cumulative rewards
through trial and error. Various works take advantage of RL to facilitate the learning process of
NTMs. Most of these models use topic evaluation metrics to optimize reward functions that help
them to guide the learning of topic modeling [58]. For instance, [59] use sentence embeddings
and add a weighting term to the ELBO to track topic diversity and coherence during training.

GNN-based NTMs Graph Neural Networks (GNNs) are neural networks designed to process
and analyze data structured as graphs, leveraging the relationships between nodes and edges
to learn representations and perform tasks like node classification, link prediction, and graph
classification. To construct a document model, several NTMs follow the VAE framework and use
GNN in addition to the traditional BoW. For instance, [60–62] transforms documents into biterm
graphs connected by word occurrences or TF-IDF values and [63, 64] applies graph topic modeling
based on word co-occurrence and semantic word correlation in social media applications.

GAN-based NTMs Generative Adversarial Networks (GANs) are a class of machine learning
models where two neural networks, a generator, and a discriminator, are pitted against each other
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to generate new, synthetic data that mimics a given dataset. Several studies have explored the
use of GANs for topic modeling. [65] proposes the Adversarial-neural Topic Model (ATM) where
a generator creates "fake" documents from a random Dirichlet sample, while a discriminator
distinguishes these generated documents from real ones. However, ATM cannot infer document-
topic distributions, as it directly maps documents to TF-IDF-based word vector representations.
To overcome this limitation, [66] introduces bidirectional adversarial training, which allows for
the inference of document-topic distributions. Building on this, [67] presents an extension that
employs two cycle-consistency constraints to produce more informative representations.

2.4 Applications

Topic models are widely used in exploratory data analysis for organizing, understanding, and
summarizing large amounts of text data [68]. In this section, we describe some examples of the
usage of topic models for content analysis, content generation, and content recommendation [69].

Content Analysis Content analysis is the most popular application for topic modeling and
covers different subtopics such as content classification and sentiment analysis in social media.
The content classification TASK includes the automatic categorization of text documents [22],
images, or video segments [5] into predefined classes. For example, [70] integrates an NTM with
a memory network for enabling simultaneous document classification and topic discovery in short
texts through joint training. In a related advancement, [71] introduces a method combining
BERT with NTMs to optimize the classification process by minimizing the use of self-attention
mechanisms. In sentiment analysis tasks, topic modeling can be utilized to determine the
sentiment expressed by user messages within social media applications [72]. [73] propose a
multitask mutual learning framework that integrates sentiment analysis with topic detection by
aligning topic-word distributions with word-level attention vectors through a process of mutual
learning. [74] applies NTMs to analyze discourse in micro-blog conversations, providing insights
into public discussions on health-related topics. [75] leverages a dynamic Neural Topic Model to
capture how non-pharmacological interventions have been perceived and discussed across various
countries and media outlets.

Content Generation Numerous studies have applied topic modeling to generate content that
adheres to specific styles or themes [76]. For instance, [77] proposes a text generation model
that captures semantic and structural features using a VAE-based NTM. Similarly, [78] utilizes
NTMs to address information sparsity in long story generation. They map a short text to a
low-dimensional document-topic distribution, from which they sample interrelated words to create
a skeleton. This skeleton, along with the short text, is then used as input to a Transformer model
to generate longer stories. [79] employs document-topic distributions from NTMs to enhance
and control global semantics in text summarization. In the context of language translation, topic
modeling is used to improve the accuracy of machine translation systems [80]. Furthermore, [81]
introduces a neural hierarchical topic model to discover hierarchical topics within documents,
subsequently generating keyphrases guided by these hierarchical topics.

Content Recommendation Similar to early works such as [82], topic models can be integrated
with recommendation systems to suggest items to users based on their preferences [83–85]. For
instance, [86] combines an NTM with a recommendation system for reviews using a structured
auto-encoder. [87] employs a graph-based NTM for citation recommendation and Valero et
al [69] use a short text NTM for podcast short-text metadata. In a medical application, [88]
proposes a classification-aware NTM that integrates a topic model with a classifier, focusing on
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classifying disinformation about COVID-19 to enhance the delivery of effective public health
messages.

2.5 Conclusion

In this chapter, we delved into the diverse and evolving landscape of topic modeling approaches,
highlighting their various applications across different domains. Probabilistic topic models,
especially those based on Latent Dirichlet Allocation (LDA), have long been the cornerstone of
topic modeling due to their ability to uncover latent thematic structures in text corpora. These
models have been widely adopted and have formed the basis for numerous advancements in the
field. However, they are not without their limitations, particularly in handling large-scale datasets
and capturing the nuanced, context-dependent meanings of words.

With the recent surge in neural network research and the growing capabilities of deep learning,
the field of topic modeling has seen significant innovation. Neural topic models have emerged,
leveraging the power of neural networks to go beyond the probabilistic frameworks traditionally
used. By exploiting the semantic depth offered by advanced language models, such as those based
on transformers, neural topic models are capable of generating richer and more coherent topics,
even from vast and complex document archives.
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Chapter

3
Topic Model Evaluation

The analysis of the evolution of science is a complex and nuanced endeavor, requiring careful
consideration due to the vast collections of documents that vary in size, publication date, and
domain. Selecting an optimal topic model for this purpose necessitates a deep understanding
of the metrics that can help determine the most suitable model for our specific needs. In this
chapter, we will explore topic evaluation metrics for identifying the most effective models for
analyzing the dynamic progression of scientific knowledge across different fields and time periods.
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3.1 Introduction

Since ground-truth labels are absent in topic modeling tasks, determining reliable and comprehen-
sive evaluation methods for topic models is inherently complex. This complexity arises from the
rich semantics of the problem, including the latent structure and high dimensionality of textual
data, context dependency, polysemy, homonymy, synonymy, and other linguistic phenomena.

Topic evaluation metrics provide valuable insights into the performance of topic models, each
measuring different aspects depending on the application context. Initially, topic models were
evaluated using perplexity [19], an automated metric that quantifies how well a statistical model
predicts a sample of unseen data. Perplexity is computed by taking the inverse probability of the
test set, normalized by the number of words in the dataset. A lower perplexity score indicates
better predictive performance and more coherent document clustering. However, perplexity
has been found to be inconsistent with human interpretability [89], leading to the adoption of
automated topic coherence metrics. These metrics, such as those based on Point-wise Mutual
Information (PMI) [90], assess the semantic relatedness of words within a topic and are believed to
align more closely with human judgment. For instance, a topic with words like "dog," "cat," and
"pet" would have high coherence. Additionally, topic diversity metrics [41] evaluate the variety
and distinctiveness of topics generated by topic models. They quantify how different the identified
topics are from each other, promoting richer and more comprehensive topic representations. A
high diversity score indicates that the model captures a wide range of themes, ensuring that the
topics are not overly similar. Each of these metrics – perplexity, coherence, and diversity – offers
unique insights, making them useful in different contexts and for different objectives in topic
modeling.
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3.2 Perplexity

Borrowed from machine learning and language models, where perplexity measures the performance
of a statistical model when it faces a new set of data [91], in topic modeling, perplexity evaluates a
topic model’s performance on a new set of test document [19]. More specifically, it quantifies how
well the topic model predicts new documents based on the normalized log-likelihood of held-out
test documents.

This is usually done by splitting the dataset into two parts: one for training, and the other for
testing. For LDA, a test set is a collection of unseen documents wd, and the model is described by
the topic matrix Φ and the hyperparameter α for topic-distribution of documents. For instance,
the LDA parameters Θ are not taken into consideration as they represent the topic distributions
for the documents of the training set, and can therefore be ignored to compute the likelihood of
unseen documents. Therefore, we need to evaluate the following log-likelihood (Equation (3.1)) of
a set of unseen documents wd given the topics Φ and the hyperparameter α for topic-distribution
θd of documents.

Lpwq “ log ppw|Φ, αq “
ÿ

d

log ppwd|Φ, αq. (3.1)

The likelihood of unseen documents can be used to compare models; a higher likelihood
implies a better model. The measure traditionally used for topic models is the perplexity of
held-out documents wd defined as:

perplexityptest set wq “ exp

"

´
Lpwq

count of tokens

*

(3.2)

which is a decreasing function of the log-likelihood Lpwq of the unseen documents wd; the lower
the perplexity, the better the model.

However, the likelihood ppwd|Φ, αq of one document is intractable, which makes the evaluation
of Lpwq, and therefore the perplexity, intractable as well. [92] derive various sampling methods
to approximate this probability.

Discussion: Perplexity is a long-standing metric for evaluating topic models but also has
faced criticism due to its poor alignment with human judgment [89, 93, 94]. Log-likelihood
computation varies inconsistently across different topic models, leading to challenges in equitable
comparisons [95, 96]. Additionally, perplexity may not adequately assess the practical utility
of topic models, as users primarily employ them for content analysis rather than document
generation.

3.3 Topic Diversity

Topic diversity estimates the diversity of the topic representations within a given set of topics.
These metrics are driven by the expectation that the generated topic representations should be
diverse and avoid topics with similar representations to efficiently represent the contents of some
archive.

The authors of [97] propose Topic Uniqueness (TU) which computes the average reciprocal of
top word occurrences in topics. In detail given K topics and the top T words of each topic, TU
is computed as follows.

TU “
1

K

K
ÿ

K“1

1

T

ÿ

xiPtpkq

1

#pxiq
(3.3)
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where tpkq means the top word set of the k-th topic, and #pxiq denotes the occurrence of word
xi in the top T words of all topics. TU ranges from 1{K to 1.0, and a higher TU score indicates
more diverse topics.

The authors of [98] propose Topic Redundancy (TR) that calculates the average occurrences
of a top word in other topics. Note that the higher TR score means less diverse topics. TR is
computed as follows.

TR “
1

K

K
ÿ

K“1

1

T

ÿ

xiPtpkq

#pxiq ´ 1

K ´ 1
(3.4)

The authors of [41] propose the Proportion of Unique Words (PUW ) method defined as the
vocabulary size divided by the total number of words within a set of topics. PUW (Equation (3.5))
measures the semantic relatedness by the proportion of unique words in a list of K topics, where
each topic is represented as a list of m words. The proportion is computed by taking the number
of unique words divided by the total number of words for each topic. Topics within a low-diversity
topic set share many words, whereas a high-diversity topic set contains topics that have few words
in common.

PUW “
|
ŤK

i“1 ttri u
m
r“1 |

m ¨ K
(3.5)

Discussion: These metrics all assess topic diversity based on the uniqueness of individual words,
assuming that diversity is optimal when each topic has distinct top words. However, we can
challenge diversity metrics because some topics naturally share common words, which complicates
reliable diversity evaluation. For instance, the word "chip" could belong to both the "potato chip"
and "electronic chip" topics, highlighting that a single word can have multiple, context-dependent
meanings. Similarly, "apple" could refer to both the "fruit" and the "company," illustrating how
common words might bridge entirely different subject areas. This overlap indicates that the mere
presence of unique words within topics is not always a sufficient indicator of true diversity. As a
result, relying solely on traditional diversity metrics might lead to an oversimplified understanding
of topic separation and cohesion, failing to account for the nuanced ways in which language is used
across different domains and contexts. A possible approach to address this issue could involve
incorporating more semantic analysis through the use of language models, such as comparing
word embeddings instead of merely terms, to better evaluate topic diversity. This method would
account for the shared vocabulary that naturally occurs between overlapping or related topics,
offering a more nuanced evaluation.

3.4 Topic Coherence

Topic Coherence (TC) metrics assess the interpretability of topics produced by topic models [99].
In essence, they gauge the consistency of words within a given topic, evaluating their interpretive
quality and meaningfulness by quantifying the semantic similarity among the words included in
that topic. A high TC value indicates that the words in the topic are semantically similar and
are likely to co-occur in the same circumstances.

TC metrics are categorized into two classes: automated TC metrics and human-annotated
TC metrics [94]. Automated TC metrics estimate the interpretability of topic models concerning
various factors such as co-occurrence or semantic similarity of topic words. On the other
hand, human-annotated TC metrics are protocols for designing surveys that rate or score the
interpretability and semantic coherence of topic models and are often used to validate automated
topic coherence metrics [30, 95, 100]. While human-annotated TC metrics incorporate subjective
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human judgments and provide a more accurate and nuanced understanding of how well topic
models are performing (e.g. in terms of their ability to capture the underlying themes in
a text corpus), they are expensive, time-consuming, and require multiple human-subjects to
avoid personal biases. On the other hand, automated TC metrics are more cost-effective than
human-annotated methods, as they do not require the hiring and training of human annotators,
which results in their ability to evaluate large amounts of data and iterate through many model
comparisons.

The authors of [30, 101] claim that a method based on the Point-wise Mutual Information
(PMI) gives the largest correlations with human ratings. They define UCI, which measures the
strength of the association between pairs of words based on their co-occurrence in a sliding window
of length-l words. Topic coherence over PMI (TCUCI) is defined as the average of the log2 ratio
of co-occurrence frequency of word wr

i and ws
i within a given topic i (Equations (3.6) and (3.7)).

TCUCI “
1

n

n
ÿ

i“1

1
`

m
2

˘

m
ÿ

r“2

r´1
ÿ

s“1

PMIpwr
i , w

s
i q (3.6)

with

PMIpwi, wjq “ log2
P pwi, wjq ` ϵ

P pwiqP pwjq
(3.7)

where n is the number of topics with m topic words and PMI represents the pointwise mutual
information between each pair of words (wr

i and ws
i ) in the topic i. PMI is computed by taking

the logarithm of the ratio of the joint probability of two words P pwr
i , w

s
i q appearing together to

the individual probabilities of the words P pwr
i q, P pws

i q occurring separately. Note that ϵ “ 1 is
added to avoid the logarithm of zero.

The authors of [95] propose UMass, an asymmetric confirmation measure that estimates the
degree of coherence between words within a given topic by calculating the log ratio frequency of
their co-occurrences in the corpus of documents. UMass counts the number of times a pair of words
co-occur in a given corpus and compares this number to the expected number of co-occurrences
where words are randomly distributed across the whole corpus. More formally, UMass computes
the co-document frequency of word wr

i and ws
i divided by the document frequency of word ws

i

(Equation (3.8)).

UMasspwr
i , w

s
i q “ log

Dpwr
i , w

s
i q ` ϵ

Dpws
i q

(3.8)

The authors of [100] propose context vectors for each topic word w to generate the frequency of
word co-occurrences within windows of ˘1 words surrounding all instances of w (Equation (3.9)).
They showed that NPMI [102] has a larger correlation with human topic ratings compared to UCI
and UMass. Additionally, NPMI takes into account the fact that some words are more common
than others and adjusts the frequency of individual words accordingly [103].

NPMIpwr
i , w

s
i q “

log2
P pwr

i ,w
s
i q`ϵ

P pwr
i qP pws

i q

´ log2pP pwr
i , w

s
i q ` ϵq

(3.9)

While NPMI is generally more sensitive to rare words and can handle small datasets, UMass
focuses on fast computation of coherence scores over large corpora. [104] showed that a smaller
value of ϵ tends to yield better results than the default value of ϵ “ 1 used in the original paper
since it emphasizes more the word combinations that are completely unattested.

The authors of [99] propose a unifying framework of coherence measures that can be freely
combined to form a configuration space of coherence definitions, allowing their main elementary
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components to be combined in the context of coherence quantification. They propose the CV
metric, which uses a variation of NPMI to compute topic coherence over a sliding window of
size N and adds a weight γ to assign more strength to more related words (Equation (3.10)).
According to [105], the CV metric is more sensitive to noisy information and dirty data than
CUMass and CUCI.

CVpwr
i , w

s
i q “ NPMIγpwr

i , w
s
i q (3.10)

The authors of [106] and [107] propose the metric TCDWR based on the Distributed Word
Representations (DWR) [42, 108] which are better correlated to human judgment. One way to
estimate TCDWR is to compute the average pairwise cosine similarity between word vectors in a
topic as in Equation (3.11).

DWRpwr
i , w

s
i q “

wr
i ¨ ws

i

}wr
i } ¨ }ws

i }
(3.11)

Another way is to define a topic vector ti (e.g. by average summation of word vectors in the
topic i) and then to calculate the average cosine similarity between topic vectors and topic word
vectors in each topic (Equation (3.12)).

TCp2q

DWR “
1

n

n
ÿ

i“1

1

m

m
ÿ

j“1

cospwj
i , tiq (3.12)

where

ti “
1

m

m
ÿ

j“1

wj
t (3.13)

Similarly, the authors of [109] present a coherence measure based on grouping topic words into
buckets and using Singular Value Decomposition (SVD) and integer linear programming-based
optimization to create coherent word buckets from the generated embedding vectors.

The authors of [110] propose several topic coherence metrics based on topic documents rather
than topic words. The approach vectorizes topic documents using several methods such as
word embedding aggregation, and computes a coherence score based on the document vectors.
[111] proposes an automated evaluation metric for local-level topic models by introducing a task
designed to elicit human judgment and reflect token-level topic quality.

Discussion: Automated metrics are intended to align more closely with human judgment,
providing a better measure of the interpretability of topic words. The risk of such approximations,
however, is that they become the target of optimization rather than the underlying property they
were intended to measure. Several recent works suggest that this has occurred especially in the
context of neural topic models.

The authors of [112] argue that interpretability is ambiguous and conclude that current
automated topic coherence metrics are unreliable for evaluating topic models in short-text data
collections and may be incompatible with newer neural topic models. In a similar study, [94]
show that topics generated by neural models are often qualitatively distinct from traditional topic
models while they receive higher scores from current automated topic coherence metrics. [94]
conclude that the validity of the results produced by fully automated evaluations, as currently
practiced, is questionable, and they only help when human evaluations cannot be performed.
[113] in another recent work shows that neural topic models fail to improve on the traditional
topic models such as Gibbs LDA [114, 115] and consider neural topic broken as they do not
function well for their intended use.
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3.5 Conclusion

This chapter explored various topic evaluation metrics for selecting optimal topic models in
scientific document analysis, highlighting the challenges posed by the absence of ground-truth
labels and complex linguistic phenomena. We discussed three main metrics: perplexity, which
measures predictive performance but lacks alignment with human interpretability; coherence,
which assesses semantic relatedness and better aligns with human judgment; and diversity, which
evaluates topic distinctiveness. The shift from perplexity to coherence reflects attempts to
better capture human-interpretable results. However, recent studies have raised concerns about
the reliability of automated metrics, especially for neural topic models, as they may become
optimization targets rather than true quality measures [94]. The chapter concludes that topic
model evaluation remains a nuanced field, calling for future research to develop more sophisticated
approaches that account for language complexities and diverse applications of topic modeling.
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4
Contextualized Topic Coher-
ence Metrics

In this chapter, we focus on topic coherence metrics, which have become the most commonly used
evaluation tools in recent years. We critically examine their limitations and the challenges they
present in accurately measuring the semantic consistency of topics. To address these shortcomings,
we introduce a new metric called Contextualized Topic Coherence (CTC). This innovative metric
enhances the evaluation process by incorporating the context in which words appear, allowing
for a more nuanced assessment of topic quality. With this new approach, we re-evaluate the
performance of the significant topic models discussed in Chapter 2, providing deeper insights into
their effectiveness and reliability.

This work, entitled "Contextualized Topic Coherence Metrics," has been presented at the
conference Findings of the Association for Computational Linguistics: EACL 2024, held in St.
Julian’s, Malta [116].
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4.1 Introduction

The evaluation of topic models is a crucial aspect of understanding their performance, particularly
in capturing the underlying themes of a text corpus. Human-annotated topic coherence (TC)
metrics, which incorporate subjective human judgments, provide a more accurate and nuanced
assessment of topic models. These metrics are valuable because they reflect human interpretability
and understanding. However, they come with significant drawbacks: they are expensive, time-
consuming, and require multiple human annotators to mitigate personal biases. In contrast,
automated metrics offer a more cost-effective solution. They do not necessitate hiring and training
human annotators, allowing for the evaluation of large datasets and facilitating multiple model
comparisons efficiently. Automated metrics aim to align closely with human judgment, enhancing
the interpretability of topic words. However, a major risk with automated metrics is that they
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can become the target of optimization, rather than genuinely measuring the intended properties
of topic models.

Recent studies highlight issues with current automated metrics, discussed in Chapter 7,
particularly in the context of neural topic models. [112] argue that the interpretability of topic
models by itself is inherently ambiguous and conclude that existing automated Topic Coherence
(TC) metrics are unreliable for evaluating topic models on short-text data collections and may
not be compatible with newer neural topic models. Similarly, the author of [94] demonstrates
that while neural models often receive higher scores from current automated TC metrics, they
tend to produce qualitatively weaker topics from traditional models. In another study, the author
of [113] show that neural topic models fail to outperform traditional models like Gibbs LDA [114,
115], discussed in Chapter 2, suggesting that neural topic models do not function well for their
intended use. Indeed, this shows that the existing automated topic coherence metrics may not
align well with human-based coherence evaluation results, as they struggle to account for the
linguistic context awareness introduced by neural topic models.

These findings indicate a demand for new automated coherence measures that are context-
aware and can effectively handle neural topic models and short-text datasets. To address these
challenges, we introduce the Contextualized Topic Coherence (CTC) metrics, a family of context-
aware TC metrics based on pre-trained Large Language Models (LLMs). Leveraging LLMs
enhances the understanding of language at a sophisticated level, incorporating linguistic nuances,
contexts, and relationships. CTC metrics are designed to be less susceptible to being misled by
meaningless topics that often receive high scores with traditional TC metrics. The contributions
are as follows.

• Introduction of CTC Metrics: We introduce Contextualized Topic Coherence (CTC) metrics,
a context-aware family of topic coherence metrics based on pre-trained Large Language
Models (LLMs). These metrics offer a sophisticated understanding of language, incorporating
its nuances and contexts.

• Comprehensive Analysis: We present a thorough analysis demonstrating the validity of
CTC metrics compared to traditional TC metrics. This analysis is based on experiments
with six topic models, including recent advanced neural topic models (ETM [41], ATM [65],
CTM [51], BERTopic [16], Top2Vec [24]) and a dominant traditional topic model (Gibbs
LDA [114]), across two different datasets.

• Re-evaluation of Topic Models: We re-evaluate these models using the proposed CTC metrics
and demonstrate that CTC metrics perform well on short documents, avoiding the pitfall
of high-scoring but meaningless topics. This re-evaluation underscores the effectiveness of
CTC metrics in providing a more reliable and context-aware measure of topic coherence.

4.2 Contextualised Topic Coherence

In this section, we introduce Contextualized Topic Coherence (CTC), a new family of topic
coherence metrics that benefit from the recent development of Large Language Models (LLM). We
present two approaches. The first approach uses encoder-only LLMs to compute contextualized
estimates of the Pointwise Mutual Information (CPMI) between topic words. In the second
approach, we use decoder-only LLMs such as ChatGPT [56] to evaluate topic coherence by
simulating to human-annotated evaluation methods.
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Figure 4.1: Calculating CPMI for two topic words in a segment of a document.

4.2.1 Automated CTC

Automated CTC leverages encoder-only Transformers[50] such as BERT[15] and the Contextual-
ized Pointwise Mutual Information (CPMI)[117] metric to calculate topic coherence. By utilizing
encoder-only LLMs, CTC captures rich contextual information, improving the assessment of how
semantically related the words within a topic are. The incorporation of CPMI further refines this
evaluation by measuring the contextualized dependencies between word pairs in a context-sensitive
manner. We will show with our experiments in Section 4.3 that this advanced method provides a
more accurate and automated means of determining topic coherence, enhancing the reliability of
topic model evaluations.

CPMI Recent work by [117] uses conditional PMI estimates to analyze the relationship between
linguistic and statistical word dependencies. For example, in a sentence about coffee, a high CPMI
between "coffee" and "beans" would suggest that these words are closely related in this context,
and knowing one word significantly helps in predicting the other. They propose Contextualized
PMI (CPMI) as a new method for estimating the conditional PMI between words in context
using a pre-trained language model. The CPMI between two words wi and wj in a sentence s is
defined by the following equation:

CPMIpwi, wj | sq “ log
ppwi | s´wiq

ppwi | s´wij q
(4.1)

where s is a sentence, s´wi represents s with one masked word wi (top in Figure 4.1) and s´wij

is s with two masked words wi and wj (bottom in Figure 4.1). The conditional probability
ppwi | s´wij q estimates the occurrence probability of wi in s´wij based on a pre-trained masked
language model (MLM) such as BERT.

We adopt CPMI to introduce a new automated metric called Contextualized Topic Coherence
(CTC). CTC computes the CPMI value for each pair of topic words along a sliding window
applied to a dataset. This method captures the statistical dependence between these words,
reflecting their semantic relatedness and thus providing a measure of topic coherence. For this, the
corpus is divided into a set of sliding window segments of length w and overlap k with previous
and following segments to compute the average CPMI over all topic word pairs in all window
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segments:

CTCCPMIpT,D,w, kq “
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˘
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CPMIpwr
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s
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where cu Ă corpus D is a window segment with length of w that has k words overlapping with
its adjacent window segments, n is the number of topics and m is the number of topic words.

4.2.2 Semi-automated CTC

In this section, we employ instruction-based LLMs[118] such as ChatGPT[56] to replicate the
most important human-annotated evaluations for topic models: Word Intrusion Task and Rating
Task. By leveraging these advanced LLMs, we aim to automate and enhance the evaluation
process, which traditionally relies on labor-intensive human annotations. These models can
generate high-quality, context-aware assessments that mirror human judgment. We will show in
Section 4.3 that this approach not only demonstrates the efficacy of the topic models in terms
of interpretability but also validates the potential of instruction-based LLMs in replicating and
"possibly" surpassing human annotation accuracy in the field of topic modeling.

Word Intrusion Task [89] proposed the topic words intrusion task to assess topic coherence by
identifying a coherent latent category for each topic and discovering the words that do not belong
to that category. In this task, human subjects detect topic intruder words to assess the quality of
topic models and to measure a coherence score that assigns a low probability for intruder words
to belong to a topic. We apply this idea by replacing humans with ChatGPT [56] answering to
prompts that provide the topic words and ask for a category and intruder words. The prompt is
as follows.

System prompt: I have a topic that is described by the following keywords: [topic-words]. Provide
a one-word topic based on this list of words and identify all intruder words in the list concerning the
topic you provided. Results be in the following format: topic: <one-word>, intruders: <words in a
list>

Rating Task The topic rating task consists of rating topics by their usefulness for a given task
(for example, document search). While human topic ratings are expensive to produce, they serve
as the gold standard for coherence evaluation [99]. For example, [119] uses human ratings to
explore the coherence of topics generated by LDA topics across full texts and abstracts. [120]
provides human annotators with a rubric and guidelines for judging whether a topic is useful
or useless. The annotators evaluate a randomly selected subset of topics for their usefulness in
retrieving documents on a given topic and score each topic on a 3-point scale, where 3=highly
coherent and 1=useless (less coherent). Following [120], [100] presented topics without intruder
words to Amazon Mechanical Turk to score them on a 3-point ordinal scale. Similar to the
intrusion task, we adapt this method to ChatGPT by defining prompts that provide ChatGPT
with the topic words and ask it to rate the usefulness of the various topic words for retrieving
documents on a given topic. The CTCRating for a topic model is obtained by the average sum of
all ratings over all topics. The prompt is as follows.

System prompt: I have a topic that is described by the following keywords: [topic-words]. Evaluate
the interpretability of the topic words on a 3-point scale where 3 = “meaningful and highly coherent”
and 0 = “useless” as topic words are usable to search and retrieve documents about a single particular
subject. Results be in the following format: score: <score>
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4.3 Experiments

In this section, we validate the effectiveness of CTC and compare the most prominent topic
models across different categories. By validating CTC, we aim to assess its reliability and compare
it with traditional coherence metrics in capturing the semantic consistency of topics. As a result,
we can also conduct a comprehensive comparison between prominent topic models, evaluating
their performance. This dual approach not only establishes CTC as a robust evaluation tool but
also provides valuable insights into the comparative efficacy of different topic modeling techniques
for scientific archives. Moreover, we expect to observe that the baseline metrics (UCI, UMass,
NPMI, CV , DWR) rank topic models differently from CTC. We also expect CTC rankings to favor
interpretable topics and handle short text datasets more effectively than the baseline metrics [94,
112]. In contrast, CTC uses a much richer contextualized language model than the statistical
models used by the other methods. Therefore, we expect to see that baseline metrics and CTC
would differ at extremes of highest or lowest coherency.

4.3.1 Experimental Setup

The experimental setup encompasses datasets from diverse domains, baseline topic models,
baseline metrics for evaluation, and specific configurations for CTC to ensure comprehensive and
rigorous comparisons across all evaluated models.

Datasets The experiments incorporate two datasets including the 20Newsgroups dataset[121]
which is a collection of approximately 20K newsgroup documents, partitioned evenly across 20
different newsgroups describing various topics. This dataset has been extensively studied with
many papers published on topic modeling since it provides a diverse set of documents across
multiple topics, making it an ideal test bed for evaluating topic modeling algorithms. The second
dataset is a collection of 17K tweets by Elon Musk published between 2017 and 2022 by [122].
Each tweet includes a text message, the date and time it was posted, and other metadata such as
the number of likes and retweets. The purpose of selecting the second dataset is to evaluate the
performance of topic models on short-text data, specifically in terms of their ability to produce
coherent topics as measured by baseline and CTC metrics.

Topic Models The experiments involve six different topic models including traditional topic
models that are widely used and the new neural topic models that have been recently proposed.
These topic models include Gibbs LDA [114], Embedded Topic Model (ETM) [41], Adversarial-
neural Topic Models (ATM) [65], Top2Vec [24], and Contextualized Topic Model (CTM) [51],
and BERTopic [16], which are discussed with details in Chapter 2. In the case of parametric
models, we selected the number of topics based on the values reported by their original papers.
Specifically, for the 20Newsgroup dataset, we chose 20, 50, and 100 topics, while for Elon Musk’s
Tweets, we selected 10, 20, and 30 topics. We maintained the remaining settings at default values
as suggested by the main papers. For the reproduction of code for each topic model, we have a
GitHub repository with this link that you can use: GitHub Repository.

Topic Coherence Metrics The topics generated by the topic models are evaluated using
the proposed Contextualized Topic Coherence (CTC) metrics, which are then compared to the
well-established automated topic coherence metrics CV, UCI, UMass, NPMI, and DWR, as are
explained in Chapter 7.
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CTC Configuration For CTCCPMI, we segmented the 20Newsgroup and Elon Musk’s Tweets
datasets into chunks of 15 and 20 words, respectively, without intersections. We then extracted the
CPMI for all word pairs in each segment using the pre-trained language models bert-base-uncased
and Tesla K80 15 GB GPU from Google Colab [123]. This pre-computing step took about 7
hours but allowed us to compute CTCCPMI for any topic model in the order of a few seconds.
The advantage of pre-computing CPMI between all word pairs is that one can run it on very
large datasets and open-source it for CTCCPMI calculation. Note that calculating CPMI only for
the word pairs of all topics takes on the order of a few minutes. For evaluating CTCIntrusion and
CTCRating, we made a request for each topic to ChatGPT with GPT 3.5 Turbo, which cost less
than a dollar for all the experiments.

4.3.2 Results

Tables 4.1 and 4.2 represent the results of the evaluation of the topic models obtained from the
20Newsgroup and Elon Musk’s Tweets datasets, respectively, using CTC and the baseline metrics.
The highest value for each metric is shown in bold to compare the models in terms of concerning
metrics. The highest values for each metric within each topic model are noted in italic font. This
helps us determine the optimal number of topics for all models except Top2Vec and BERTopic,
which don’t require this input parameter. For example, as illustrated in Table 4.1, the most
coherent number of topics for Gibbs LDA is 20 across all coherence metrics, while for ETM, the
optimal number is 20 for all metrics except UMass. ATM achieves the best coherence with 100
topics, except with respect to DWR and Rating. Similarly, as illustrated in Table 4.2, for the
short-text Elon Musk Tweets dataset, the optimal number of topics follows a comparable pattern.
Specifically, for CTCCPMI, the most coherent parameters for Gibbs LDA, ETM, ATM, and CTM
are 20, 100, 100, and 20, respectively.

Table 4.1: Scores of Topic Coherence Metrics on 20Newsgroup dataset.

Topic Models Baseline Metrics CTC Metrics

#T UCI UMass NPMI CV DWR Rating Intrusion CPMI

Gibbs LDA
20 0.260 -2.338 0.043 0.512 0.211 1.3 0.225 9.92
50 -0.121 -2.771 0.023 0.479 0.191 1.16 0.220 5.99
100 -0.690 -3.030 0.002 0.450 0.149 1.14 0.267 3.25

ETM
20 0.478 -2.08 0.067 0.563 0.292 0.7 0.452 19.16
50 0.380 -1.903 0.054 0.532 0.330 1.22 0.348 20.35
100 0.351 -1.962 0.049 0.522 0.312 1.23 0.41 22.58

ATM
20 -1.431 -3.014 -0.059 0.338 0.151 0.92 0.305 0.03
50 -0.940 -2.902 -0.046 0.342 0.077 1.15 0.275 0.18
100 -0.735 -2.741 -0.032 0.362 0.053 1.12 0.340 1.72

CTM
20 -1.707 -4.082 0.005 0.601 0.268 1.25 0.385 5.93
50 -0.724 -3.008 0.046 0.590 0.236 1.56 0.380 7.02
100 -0.926 -3.118 0.027 0.561 0.210 1.31 0.392 6.16

Top2Vec 85 0.910 -2.449 0.192 0.785 0.473 1.670 0.399 3.77

BERTopic 145 -1.023 -5.033 0.098 0.681 0.309 1.517 0.359 2.91

(a) 20Newsgroup | CV (b) 20Newsgroup | CPMI (c) Twitter | NPMI (d) Twitter | Intrusion

Figure 4.2: Comparison Between Topic Models based on Topic Coherence Evaluation

General Observations Before analyzing the results in detail, we examine the relationship
between the CTC metrics and the baseline metrics by performing Pearson’s correlation coefficient
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Table 4.2: Scores of Topic Coherence Metrics on Elon Musk’s Tweets dataset

Topic Models Baseline Metrics CTC Metrics

#T UCI UMass NPMI CV DWR Rating Intrusion CPMI

Gibbs LDA
10 -0.441 -3.790 0.016 0.498 0.838 1.6 0.29 2.19
20 -1.834 -5.415 -0.049 0.395 0.798 1.5 0.225 1.04
30 -3.068 -6.390 -0.099 0.336 0.783 1.466 0.33 0.86

ETM
10 0.205 -3.209 0.051 0.560 0.952 1.1 0.24 5.41
20 0.155 -3.079 0.028 0.538 0.974 1.433 0.233 4.48
30 0.025 -3.215 0.022 0.515 0.978 1.05 0.195 4.30

ATM
10 -9.021 -12.859 -0.324 0.364 0.730 1.2 0.211 -0.004
20 -7.967 -11.770 -0.283 0.343 0.694 1.1 0.177 0
30 -7.278 -11.301 -0.258 0.350 0.753 0.933 0.214 -0.03

CTM
10 -2.614 -7.049 -0.030 0.580 0.888 2.0 0.439 1
20 -3.720 -8.336 -0.070 0.534 0.880 1.45 0.185 3.04
30 -3.589 -8.063 -0.064 0.573 0.873 1.766 0.276 2.56

Top2Vec 164 -6.272 -10.536 -0.152 0.401 0.847 1.481 0.274 2.08

BERTopic 217 -4.131 -11.883 -0.020 0.432 0.541 1.539 0.276 1.52

analysis [124] on the results from Tables 4.1 and 4.2 similar to [112]. Performing Pearson’s
correlation coefficient analysis for topic coherence evaluations involves calculating the degree of
linear relationship between pairs of coherence scores obtained from different evaluation metrics or
methods. This analysis quantifies how closely the coherence assessments derived from various
approaches align, providing insights into their consistency and reliability across different topic
models. As shown in Figure 4.3(a), for 20Newsgroup, the baseline metrics UCI and UMass are
highly correlated with CPMI but not with CTCRating and CTCIntrusion, which are more correlated
with the baseline measures NPMI and CV and DWR (which are also highly correlated). On
the other hand, for the short text EM Tweets dataset, Figure 4.3(b) shows that CPMI has a
high correlation with all baseline methods, while CTCIntrusion and CTCRating are completely
independent of CPMI and the baseline measures.

(a) 20Newsgroup (b) Elon Musk Tweets

Figure 4.3: Pearson’s correlation coefficient on CTC and baseline

Concerning our expectation that baseline metrics rank topic models differently from CTC
metrics, Table 4.1 reports that the baseline metrics (except for UMass) point to Top2Vec while
CTC metrics (except for CTCRating) point to ETM for achieving the highest scores. Similarly,
Table 4.2 reports that the baseline metrics (except for CV) point to ETM while CTC metrics
(except for CTCCPMI) point to CTM for achieving the highest scores. These contradictions
between CTC and baseline metrics are aligned with our expectations and we will explore them
with a meta-analysis of topics generated by these topic models and the scores they have received
from CTC and baseline metrics.
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Meta-analysis To check the performance of different coherence metrics, we will compare the
interpretability of their high and low-scoring topics. Note that CTC metrics observe contextual
patterns between topic words, and therefore, we expect them to provide more consistent coherence
scores according to the interpretability of the generated topics for all topic models.

20Newsgroup Dataset To verify the consistency of some representative scores in Table 4.1,
we examine the topics for 20Newsgroup generated by Top2Vec, which have high and low baseline
metrics scores, and ETM, which have high and low CTC metrics scores. Table 4.3 compares the
top-2 and bottom-2 topics ranked by CV and CTCCPMI. The choice of these metrics is motivated
by our correlation analysis in Figure 4.3(a), which has the least correlation among CTC and
baseline metrics in CTCCPMI and CV.

First, we notice that the top-2 topics returned by CV for Top2Vec are not readily interpretable
but are statistically meaningful: dsl, geb, cadre, shameful, jxp are fragments of an email signature
that occurs 82 times, while tor, nyi, det, chi, bos are abbreviations for hockey teams. This is
not surprising, since Top2Vec produces what we call “trash topics”, which is a common problem
for clustering-based topic models that cannot handle so-called “trash clusters” [125]. CTCCPMI
returns a more coherent ranking for Top2Vec (the top 2 topics appear coherent, while the bottom
topics are incoherent for human evaluation). This supports our assumption that traditional
topic coherence metrics such as CV fail to evaluate neural topic models and, in this case, even
give the highest scores to trash topics. This happens because they only consider the syntactic
co-occurrence of words in a window of text and cannot observe the underlying relationship
between topic words. CTCCPMI, on the other hand, can detect these trash topics and score them
more accurately because it is supported by LLMs that have rich information about linguistic
dependencies between topic words. Therefore, CTCCPMI also might be a good measure to filter
"trash topics" obtained by some cluster-based topic model.

The second observation in Table 4.3 is that all eight topics returned for ETM are coherent.
This is because ETM, which is a semantically-enabled probabilistic topic model, produces decent
topics that are overall highly ranked by CTCCPMI (Table 4.1 and fig. 4.2(b)).

Table 4.3: Top-2 and bottom-2 topics of ETMp100q and Top2Vec on 20Newsgroup

Topic Model Ranked By Topics CV CPMI

ETMp100q

Highest CV

god, christian, people, believe, jesus 0.740 0.017
drive, card, scsi, disk, mb, 0.739 0.037

Lowest CV

book, number, problem, read, call 0.369 0.018
line, use, power, bit, high 0.458 0.018

Highest CPMI
year, time, day, one, ago, week 0.559 0.709
game, year, team, player, play 0.706 0.242

Lowest CPMI
new, number, also, well, call, order, used 0.340 -0.007
people, right, drug, state, world, country 0.529 -0.002

Top2Vec

Highest CV

dsl, geb, cadre, shameful, jxp 0.995 0.009
tor, nyi, det, chi, bos 0.989 0.012

Lowest CV

hacker, computer, privacy, uci, ethic 0.255 -0.0001
battery, acid, charged, storage, floor 0.344 0.006

Highest CPMI
mailing, list, mail, address, send 0.792 0.154

icon, window, manager, file, application 0.770 0.076

Lowest CPMI
lc, lciii, fpu, slot, nubus, iisi 0.853 -0.004

ci, ic, incoming, gif, edu 0.644 -0.002

Twitter Dataset In the same way, we verify the consistency of some representative scores in
Table 4.2 by checking the interpretability of topics for Elon Musk’s tweets generated by ETM,
which has high baseline scores, and by CTM, which has high CTC scores. These metrics are
among those with the lowest correlation between CTC and baseline metrics in Figure 4.3(b). We
compare the top 2 and bottom 2 topics ranked by NPMI and CTCRating shown in Table 4.4.

A notable finding for CTM topics is that topics ranked highest by the CTCRating metric tend
to be more interpretable compared to those ranked highest by NPMI. Similarly, topics ranked
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Table 4.4: Top-2 and bottom-2 topics of ETMp30q and CTMp30q on Elon Musk’s Tweets

Topic Model Ranked By Topics NPMI Rating Intrusion

CTMp30q

Highest NPMI
erdayastronaut, engine, booster, starship, amp 0.122 3 0.1

year, week, next, month, wholemarsblog 0.057 2 0.1

Lowest NPMI
transport, backup, ensure, installed, transaction -0.480 2 0.1
achieving, transition, late, transport, precision -0.459 1 0.1

Highest Rating
tesla, rt, model, car, supercharger -0.152 3 0.5

spacex, dragon, launch, falcon, nasa -0.283 3 0.4

Lowest Rating
ppathole, soon, justpaulinelol, yes, sure -0.330 1 0.5

achieving, transition, late, transport, precision -0.459 1 0.1

ETMp30q

Highest NPMI
amp, time, people, like, would, many 0.001 2 0.7

engine, booster, starship, heavy, raptor -0.023 2 0.1

Lowest NPMI
amp, rt, tesla, im, yes -0.283 1 0.1

amp, tesla, year, twitter, work -0.228 1 0.1

Highest Rating
amp, twitter, like, tesla, dont -0.186 2 0.8
amp, time, people, like, would 0.001 2 0.7

Lowest Rating
amp, tesla, year, twitter, work -0.228 1 0.1

amp, tesla, one, like, time -0.204 1 0.1

lowest by the CTCRating metric tend to be less interpretable compared to those ranked lowest by
NPMI. These observations also apply to ETM topics, as the CTCRating metric is not affected by
the scarcity of short text records. This is because CTCRating is complemented by a chatbot that
mitigates the impact of limited data availability.

It is also interesting to observe that, based on the four topics seen, the topics generated
by CTM appear to be more interpretable and coherent than those generated by ETM. This
demonstrates the superiority of CTCRating and CTCIntrusion over baseline metrics, as we observed
in Table 4.2. It also suggests that, for the short text datasets examined inFigure 4.2(d), CTM
is ranked higher than ETM by the CTCIntrusion metric, potentially due to the contextualized
element in its architecture.

4.4 Human Evaluation

The goal of automated topic coherence metrics is to accurately approximate human judgment on
topics without the need for expensive, time-consuming studies that require multiple annotators to
avoid bias. In this section we compare the proposed metric with human evaluation data provided
by [94]. The validity of automated topic coherence metrics depends on their correlation with
human scores. However, these evaluations are expensive, time-consuming, and require multiple
human subjects to avoid personal bias. In this section, we use the evaluation data provided in
[94] and investigate the proposed metric with human scores. This data includes human evaluation
scores (intrusion and ranking) for 50 topics generated by three topic models (Gibbs LDA [115],
DVAE [29], and ETM [41]) applied on the (New York Times) dataset. We evaluate the generated
topics with CTCCPMI, CTCintrusion and CTCranking, which are comparable to human intrusion
and human ranking.

As shown in Table 4.5, human evaluators tend to see little quantifiable difference between
Gibbs LDA and DVAE, while traditional metrics show pronounced differences. In contrast, we
find that CTC metrics more closely match human preferences (or lack thereof). This result may
be simply due to a miscalibration of relative scores. We also report Spearman’s Rank Correlation
[126] results to assess the strength and direction of the monotonic relationship between the
ranking of topics in each metric. The CTC metrics have an overall higher correlation with human
ratings than the baseline metrics. We also can examine and compare different coherence metrics
by analyzing the topic words of high and low-scoring topics. As shown in Tables 4.6 and 4.7, CV

generates top topics which probably would not be chosen by a human. For example, the topic
inc, 9mo, earns, otc, qtr, rev gets the highest score, even though it has little clear interpretability.
On the other hand, CTC metrics score topics relative to their contextual relationship and are
very close to human scores. For example, the topic film, theater, movie, play, director, movies
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Table 4.5: Topic Coherence Scores of Gibbs LDA, DVAE, ETM on NYT News

Topic Models (T = 50)
Metrics Gibbs LDA DVAE ETM

Baseline

UCI 1.42 2.43 1.01
UMass -7.6 -15 -7.4

CV 0.69 0.84 0.60
NPMI 0.15 0.25 0.11

Human Intrusion 0.71 0.74 0.64
Rating 2.66 2.48 2.38

CTC
Intrusion 2.12 2.05 2.06
Rating 0.62 0.67 0.64
CPMI 4.18 0.61 3.72

receives the highest score by both CTC and human scoring.

Table 4.6: Bottom-5 topics among the topics generated by Gibbs LDA, DVAE, and ETM on NYT News

Botton-5
Sorted by Model Topic Scores

CV Human CTC

CV

DVAE spade, derby, belmont, colt, spades, dummy, preakness 0.23 1.5 0.4

ETM like, making, important, based, strong, including, recent 0.35 2 0.3

ETM time, half, center, open, away, place, high 0.37 1.6 0.2

ETM today, group, including, called, led, known, began, built, early, 0.37 2 0.3

Gibbs LDA people, editor, time, world, good, years, public, long, 0.37 0.1 1.1

Human Score

Gibbs LDA people, editor, time, world, good, years, public, 0.37 0.1 1.1

ETM week, article, page, march, tuesday, june, july 0.57 0.4 1.3

Gibbs LDA street, tickets, sunday, avenue, information, free 0.75 0.4 0.3

ETM new_york, yesterday, director, manhattan, brooklyn, received 0.49 0.4 1

Gibbs LDA bedroom, room, bath, taxes, year, market, listed, kitchen, broker 0.72 0.4 1.3

CTC

Gibbs LDA city, mayor, state, new_york, new_york_city, officials 0.61 2.5 0.1

ETM power, number, control, according, increase, large 0.44 0.9 0.2

Gibbs LDA officials, board, report, union, members, agency, yesterday 0.51 0.8 0.3

ETM time, half, center, open, away, place, high, day, run 0.37 1.2 0.3

ETM net, share, inc, earns, company, reports, loss, lead 0.73 1.8 0.3

4.5 Conclusion

In this chapter, we have introduced Contextualized Topic Coherence (CTC) metrics which leverage
pre-trained Large Language Models (LLMs) to offer a nuanced understanding of language and
context for estimating topic coherence. Through a comprehensive analysis, we have demonstrated
the superiority of CTC metrics over traditional Topic Coherence (TC) metrics, showcasing their
effectiveness across a range of advanced neural and traditional topic models. Our experiments
with six models, including ETM, ATM, CTM, BERTopic, Top2Vec, and Gibbs LDA, on diverse
datasets have validated that CTC metrics excel in capturing meaningful semantic relationships,
particularly beneficial for short documents where traditional metrics may falter. This implies
that baseline metrics often yield high scores for incoherent topics, while conversely assigning low
scores to well-interpretable topics. This re-evaluation underscores CTC metrics as a robust tool
for evaluating and improving the quality of topic models in diverse applications such as topic
evolution.
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Table 4.7: Top-5 topics among the topics generated by Gibbs LDA, DVAE, and ETM on NYT News

Top-5
Sorted by Model Topic Scores

CV Human CTC

CV

DVAE inc, 9mo, earns, otc, qtr, rev 0.98 1.2 0.9

DVAE inc, 6mo, earns, otc, rev, qtr 0.98 1.2 1.3

DVAE inc, otc, qtr, earns, rev, 6mo 0.97 1.3 0.8

DVAE arafat, hamas, gaza, palestinians, west_bank 0.97 2.1 1.5

DVAE condolences, mourns, mourn, board_of_directors, heartfelt, deepest 0.97 0.6 1.3

Human Score

Gibbs LDA film, theater, movie, play, director, films 0.73 3 2.7

DVAE skirts, dresses, chanel, couture, fashion 0.91 3 1.3

DVAE tenants, tenant, zoning, rents, landlords, developers 0.86 3 1.2

DVAE paintings, sculptures, galleries, picasso, sculpture, drawings, 0.91 2.9 2.1

DVAE television, network, news, cable, nbc, year, cbs 0.68 2.8 1.9

CTC

Gibbs LDA film, theater, movie, play, director, films 0.73 3 2.7

ETM court, judge, law, case, federal, lawyer, trial 0.80 2.8 2.6

Gibbs LDA court, law, judge, case, state, federal, legal, 0.72 2.6 2.2

Gibbs LDA music, dance, opera, program, work, orchestra, performance 0.73 1.1 2.1

ETM film, movie, story, films, directed, movies, star, character 0.79 2.7 2.1
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Part II

Dynamic Topic Modeling
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“ Unknown in Paris, I was lost in the great city, but the
feeling of living there alone, taking care of myself without
any aid, did not at all depress me. If sometimes I felt
lonesome, my usual state of mind was one of calm and
great moral satisfaction. ” Marie Curie

Motivation

Studying dynamic topic models is crucial for understanding the evolution of science as they
allow researchers to analyze how scientific themes and interests shift over time. By capturing
the temporal dynamics of topic prevalence, dynamic topic models help identify influential works,
pivotal discoveries, and the diffusion of ideas across disciplines. Moreover, they play a significant
role in examining the evolution of content within specific domains, enabling a detailed exploration
of how the focus and discourse within a field change.

Organization

In this part of the thesis, we explore what dynamic topic models are, providing an overview of
their mechanisms and applications in Chapter 5. We delve into the significant models within this
domain, emphasizing their advantages, such as the ability to capture temporal shifts in topic
prevalence and the evolution of scientific discourse. We also discuss the challenges associated
with dynamic topic models, including computational complexity and the difficulty of accurately
modeling rapidly changing topics. In Chapter 6, we introduce ANTM, a novel dynamic topic
model that incorporates neural topic modeling with advanced dynamic clustering techniques to
more precisely capture the temporal dynamics of topics and their interrelationships.

Contributions

Our contributions in this part are twofold. First, in Chapter 6, we introduce ANTM [127, 128],
a novel dynamic topic model that incorporates neural topic modeling with advanced dynamic
clustering techniques to more precisely capture the temporal dynamics of topics and their
interrelationships. We then conduct a comparative analysis of ANTM against other state-of-
the-art models, evaluating their performance based on various criteria such as diversity and
interpretability. This comparative study aims to highlight the improvements and potential
applications of our new model in understanding the evolution of scientific content and domain
evolution.

This contribution has been presented at "BDA 2023: 39ème Conférence sur la Gestion
de Données – Principes, Technologies et Applications" published in Rahimi, H., Naacke, H.,
Constantin, C., Amann, B. (2024). ANTM: Aligned Neural Topic Models for Exploring Evolving
Topics. In: Hameurlain, A., Tjoa, A.M., Akbarinia, R., Bonifati, A. (eds) Transactions on
Large-Scale Data- and Knowledge-Centered Systems LVI. Lecture Notes in Computer Science,
vol 14790. Springer, Berlin, Heidelberg.
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Chapter

5
Dynamic Topic Models

In this chapter, we focus on the concept of dynamic topic model, categorizing and examining
their various types. We study their advantages, such as their capacity to track the evolution of
topics over time and their utility in uncovering hidden patterns in temporal data. Additionally,
we address the challenges associated with these models, including the computational demands
and the complexity of accurately modeling dynamic data. By categorizing and scrutinizing these
models, we aim to provide a comprehensive understanding of their strengths and limitations,
laying the groundwork for further innovations and applications in the study of evolving scientific
archives.
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5.1 Introduction

Dynamic topic models are the temporal variants of topic models that update their estimates of
the underlying topics as new documents are added to the corpus [6, 129]. They can be used to
analyze topic evolution and to identify evolving topics and temporal patterns in the contents of
document archives [130, 131]. More specifically, they can be applied, for example, to discover the
evolution of research topics and innovations in scientific archives [132] and to understand trends
in public opinion on particular issues [133].

Before introducing dynamic topic models, it is essential to understand the notion of evolving
topics that capture the temporal progression of semantically similar documents within an ordered
sequence of time periods in an input archive. This concept is formally defined as follows.

Definition 5.1.1 (Evolving Topics). Given a corpus D of time-stamped documents and an ordered
sequence of possibly overlapping time periods P “ rp0, ..., pns, an evolving topic is a sequence
of sub-topics t “ rt0, ..., tns such that all documents in Dptiq have been published during the
time window pi and Dptq “ YtiPtDptiq, is a cluster of semantically similar documents. Figure 5.1
represents two evolving topics from a corpus of time-stamped documents.

Dynamic topic models are a computational approach that captures the temporal changes in
topic distributions over a sequence of time periods by producing sets of evolving topics. Formally,
dynamic topic models can be defined as follows:
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Figure 5.1: Topic Representation of Dynamic Topic Models [69]

Definition 5.1.2 (Dynamic Topic Models). Given a corpus D over a sequence of time periods
P “ rp0, ..., pns, a dynamic topic model generates a set of evolving topics Tdynamic, where each
evolving topic t “ rt0, ..., tns P Tdynamic is a sequence of topics as defined in Definition 5.1.1.

Dynamic topics models identify how the weighted list of terms Wt and the subset of documents
Dt associated with each topic ti in t change over time, thereby providing insights into the temporal
dynamics of the corpus.

Dynamic topic models use different assumptions to statistically characterize the evolution of a
document corpus in the form of evolving topics [11]. Like their static counterparts, dynamic topic
models can be divided into Probabilistic Dynamic Topic Models (PDTM) and Neural Dynamic
Topic Models (NDTM).

5.2 Probabilistic Dynamic Topic Models

Different assumptions regarding the definition of topic evolution are employed to statistically
characterize dynamic topic models (DTMs) [11].

Dynamic Latent Dirichlet Allocation (D-LDA) [6] represents one of the earliest PDTMs that
incorporates temporal components into topic models for studying topic evolution. D-LDA [6]
is a variant of Latent Dirichlet Allocation (LDA) [19] which employs a Bayesian approach
to characterize the evolving proportions of topics within documents as time progresses. The
generative model of D-LDA differs from LDA in that the topics are time-specific, denoted as
β

ptq
1:K , where t P t1, . . . , T u indexes time steps. Additionally, the prior over the topic proportions

θd depends on the time stamp of document d, denoted as td P t1, . . . , T u.

• 1. Draw topic proportions θd „ LNpδtd , a
2Iq.

• 2. For each word n in the document:

– (a) Draw topic assignment zdn „ Catpθdq.

– (b) Draw word wdn „ Catpβptdq
zdn q.

where a represents a model hyperparameter and δt is a latent variable that governs the prior mean
over the topic proportions at time t. To promote smoothness across topics and topic proportions,
D-LDA introduces random walk priors for β

ptq
1:K and δt.

44



CHAPTER 5. DYNAMIC TOPIC MODELS

Figure 5.2: D-LDA Graphical Model

sβ
ptq
k |sβ

pt´1q

k „ Npsβ
pt´1q

k , φ2Iq (5.1)

β
ptq
k “ softmaxpsβ

ptq
k q (5.2)

δt|δt´1 „ Npδt´1, θ
2Iq (5.3)

sβ
ptq
k P RV are transformed topics mapped to the simplex to obtain β

ptq
k . Hyperparameters θ and

φ control Markov chain smoothness.

D-LDA has been extended by other approaches to handle the temporal continuity of evolv-
ing topics in different ways [134, 135]. For instance, the discrete-time Dynamic Topic Model
(dDTM) [136] discretisizes the data into time intervals to make evolving topics more representative
of the contents of documents than D-LDA. On the other hand, Continuous-Time Dynamic Topic
Model (cDTM) [137] handles any data point in time, regardless of the time resolution to decrease
the complexity of variational inference for the dDTM grows quickly as time granularity increases.

Another important PDTM is Topics Over Time (ToT) [130], which relies on the discretization
of time. In this model, each topic is associated with a continuous distribution over timestamps.
For each generated document, the mixture distribution over topics is influenced by both word
co-occurrences and the document’s timestamp. Thus, the meaning of a particular topic can be
relied upon as constant, but the topics’ occurrence and correlations change significantly over
time. ToT assumes time is inherently continuous and, therefore is characterized by a continuous
distribution over timestamps [138].

Although PDTMs have been innovative tools for studying topic evolution [139, 140], they
have several limitations. The first of these is scalability, as PDTMs become computationally
expensive and time-consuming when dealing with very large datasets [141]. This complexity
is influenced by several important factors, including the size of the vocabulary, the number of
documents, the number of time periods (time granularity), and the number of topics. Notably,
the size of the vocabulary plays a very important role in this regard [142]. There are efforts in
the development of scalable PDTMs, such as [143], which extends the class of tractable priors
from Wiener processes to the more general class of Gaussian processes. This approach allows the
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model to be applied to large collections of text and to explore topics that evolve smoothly over a
long period.

In addition, PDTMs cannot fully capture the diversity of topics over time because they assume
that topics remain relatively unchanged over time [144]. Therefore, topics are consistent across
the dataset and one may not be able to detect fine-grained changes in topics or subtle variations
in topic representation over different time periods [145]. Several generative probabilistic topic
models attempt to overcome these problems [146–149].

5.3 Neural Dynamic Topic Models

Neural Dynamic Topic Models (NDTMs) use neural networks to create a fixed-length vector
representation by formalizing the temporal probability distributions of words and documents [150].
While preserving significant words in the topic descriptions, these methods generate dense
clusters of interpretable documents[151]. Despite attempts to solve the problems with PDTMs
(scalability, low evolution diversity), PDTMs lack coherence and diversity in representing topics
when compared to the methods that take advantage of neural networks [16, 152, 153].

DTM is combined with word embeddings in Dynamic Embedded Topic Models (D-ETM) [41,
154] to improve the performance of topic models by providing a more informative representation
of words. D-ETM analyzes time-series documents by changing the topics over time. D-ETM runs
ETM for each time period in the data set, passing parameters into the next time period like in
D-LDA. The generative process of documents is described as follows:

• 1. For each time step t P t1, . . . , T u:

– Draw topic distribution for each topic k:

α
ptq
k „ LN pηtd , γ

2Iq and β
ptq
k “ softmaxpρTα

ptq
k q (5.4)

– Draw topic proportion mean:
ηt „ N pηt´1, δ

2Iq (5.5)

• 2.For each document index d P t1, . . . , Du:

– Draw topic proportion: Θd „ LN pηtd , γ
2Iq

• 3. For each word index n P t1, . . . , Ndu P d:

– Draw topic assignment: zd,n „ CatpΘdq

– Draw word: wd,n „ Catpβptdq
zd,nq

where α
ptq
k and β

ptq
k represent the topic embedding and word distribution for the kth topic at the

tth time step, respectively. The hyperparameters γ, η, and ρ govern the variance of the normal
distributions in the model.

D-ETM has been criticized for its time-consuming nature and for producing topic repre-
sentations with lower diversity and coherence compared to recent models [127]. To address
similar concerns, [155] propose an amortized variational inference with self-normalized importance
sampling approximation to the word distribution that dramatically reduces the computational
complexity and the number of variational parameters in order to handle large vocabularies.

Another NDTM model is the Graph-based Dynamic Topic Model (GDTM) [156] that offers a
scalable solution for dynamic topic modeling, particularly in social media contexts. This model
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Figure 5.3: BERTopic process for Dynamic Topic Modeling [16]

assigns documents to topics by analyzing the overlap in their graph representations and partitions
them based on graph density. A limitation of GDTM is that it focuses on outputting document
partitions and does not provide the most probable words for each topic. Observe that topic
representations can also be computed a posteriori as in Top2Vec and BERTopic (Chapter 2).

BERTopic [16] is a prominent clustering-based model that introduces dynamic topic modeling
through a static process, as explained in Chapter 5, while representing topics dynamically over time.
BERTopic first computes low-dimensional semantic document embeddings with the Bert language
representation model [15] (Embedding) and the UMAP dimension reduction algorithm [47]. As
shown in Figure 5.3, it then applies a static clustering technique to extract topic document
clusters (Clustering) and segments each document cluster along an overlapping temporal time
window (Segmentation) before computing the term vector representation (Representation) with
c-TF-IDF [55]. The transformation of static document clusters into dynamic topics through
segmentation has an important drawback. While documents may be categorized together under
the same global topic, a more fine-grained analysis reveals that they often belong to distinct
sub-topics within specific temporal frames. This global clustering followed by segmentation
typically generates only one sub-topic for each period, which can be less precise than the multiple
sub-topics that would be obtained through a period-wise topic generation process [157]. This
problem hampers the ability to capture the temporal variations of dynamic topics, including
changes in the number of document clusters or the size of each cluster, as topics emerge and
fade over time. Moreover, this limitation diminishes the explainability and the interpretability
of evolving topics within specific time periods [158]. This is mainly due to the fact that the
representation is derived only from the content of documents assigned to a set within a given
time period [159]. Our dynamic topic model presented in Chapter 6, aims to better capture the
temporal variations in document clusters, to enhance the explainability and interpretability of
evolving topics, and to resolve the issues related to documents being incorrectly categorized under
a single global topic.
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5.4 Conclusion

In this chapter, we have explored the concept of dynamic topic models, detailing their various
types and examining their strengths and challenges. We highlighted their ability to track the
evolution of topics over time and to reveal hidden patterns in temporal data. Additionally,
we discussed the computational demands and complexities associated with modeling dynamic
and multifaceted data. By categorizing and scrutinizing these models, we aimed to provide a
comprehensive understanding of their advantages and limitations, setting the stage for further
advancements in the analysis of evolving scientific content. The discussion also revealed specific
limitations in current dynamic topic modeling approaches, such as difficulties in accurately
capturing temporal variations and managing large vocabularies. The next chapter will address
these issues by proposing a novel dynamic topic model. This new model aims to enhance the
accuracy of topic segmentation over time, improve the explainability and interpretability of
evolving topics, and resolve problems related to the misclassification of documents across different
temporal frames.
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Chapter

6
Aligned Neural Topic Models

Dynamic Topic Models (DTMs) have become crucial tools for understanding the evolution
of topics over time in large text corpora. As explained in Chapter 5, DTMs can be broadly
categorized into Probabilistic Dynamic Topic Models (PDTMs) and Neural Dynamic Topic
Models (NDTMs). Each category has its unique strengths and limitations, particularly in terms of
scalability and computational efficiency. Probabilistic Dynamic Topic Models (PDTMs) have been
widely adopted for analyzing topic evolution due to their robust statistical foundations. However,
when applied to extensive archives with vast vocabularies, PDTMs face significant computational
challenges. These challenges primarily stem from the necessity to sample from complex posterior
distributions, making PDTMs less scalable and more computationally expensive as the dataset
size increases. In contrast, Neural Dynamic Topic Models (NDTMs) have emerged as a promising
alternative, leveraging neural network architectures to enhance scalability and efficiency.

In this chapter, we introduce ANTM, a novel family of dynamic topic models designed to
capture topic evolution with advanced algorithms. We conduct a comprehensive evaluation
of ANTM, assessing the diversity and interpretability of the evolving topics it generates, and
compare these results with state-of-the-art dynamic topic models, including recent methods such
as D-ETM [154] and BERTopic [16], as well as traditional probabilistic dynamic topic models
like TOT [130] and D-LDA [6]. Additionally, we perform a configuration analysis of ANTM to
compare runtime and quality scores across different settings, providing valuable insights into
the performance of various configurations. Finally, we offer a qualitative analysis of ANTM,
discussing its limitations and proposing future research directions to enhance its capabilities.

This work has been presented at BDA’2023 and published in Rahimi, H., Naacke, H.,
Constantin, C., Amann, B. (2024). ANTM: Aligned Neural Topic Models for Exploring Evolving
Topics. In: Hameurlain, A., Tjoa, A.M., Akbarinia, R., Bonifati, A. (eds) Transactions on
Large-Scale Data- and Knowledge-Centered Systems LVI. Lecture Notes in Computer Science,
vol 14790. Springer, Berlin, Heidelberg.
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6.1 Introduction

Among the state-of-the-art NDTMs, BERTopic is noteworthy for its innovative approach to
topic extraction. Despite their advantages, NDTMs, including BERTopic, are not without
limitations [157]. One critical issue arises during the transformation of static document clusters
into dynamic topics through segmentation. This process can inadvertently group documents
under the same global topic, even when they belong to distinct topics within specific temporal
frames [159]. This misclassification poses a significant drawback, especially in scenarios where
capturing the temporal nuances of topic evolution is crucial. The resultant clusters may fail to
accurately reflect the dynamic nature of topics, thereby impeding the model’s ability to monitor
changes in the number of document clusters or the size of each cluster as topics emerge and
dissipate over time. These limitations highlight the ongoing need for advancements in dynamic
topic modeling techniques to better accommodate the complexities of temporal topic variation.
To address these challenges, we introduce a new clustering-based dynamic topic model, called the
Aligned Neural Topic Models (ANTM).

TextText

Embedding

UMAP

Clustering

Segmentation

Representation

Embedding

Segmentation

Aligned UMAP

Sliding Window 
Clustering

Representation

Evolving TopicsEvolving Topics

Documents Documents

BERTopic ANTM

Figure 6.1: BERTopic and ANTM

6.2 ANTM

As depicted on the right of Figure 6.1, ANTM employs a process similar to BERTopic but in
a different sequence. Specifically, it performs the temporal segmentation step on the document
embeddings before the dimensionality reduction step, utilizing Aligned UMAP. The document
cluster segments are then reassembled along the time dimension through Sliding Window Clustering
to generate dynamic topic document clusters. This approach allows ANTM to consider temporal
changes in document content, producing a range of high-quality topics for each period. By
implementing an overlapping sliding window algorithm, ANTM can identify collections of related
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topics that span multiple periods, yet remain distinct enough to demonstrate evolution within a
single domain. Our experiments conducted on three datasets and four dynamic topic models show
a considerable improvement in coherence and diversity scores compared to state-of-the-art PDTMs
and ADTMs. ANTM offers a significant advancement in the field of topic modeling. This work
not only enhances our ability to track and understand topic evolution over time but also sets the
stage for future innovations in this domain. As illustrated in Figure 6.2, the ANTM architecture
consists of three layers. The first layer leverages advanced pre-trained language models (LLMs)
to generate vector representations for each document, capturing its content (Document Vectors).
The second layer, referred to as the SWS Splitter, subdivides the document vectors into temporally
overlapping subsets (Temporal Document Vectors) and applies the AlignedUMAP algorithm [160]
to produce low-dimensional document vector embeddings with global coherence for each subset.
Subsequently, the hierarchical density-based clustering algorithm HDBSCAN [161] is applied to
each overlapping subsets to generate topic clusters for each time period, which are then aligned
to produce dynamic topic clusters (aligned subsets of clusters over all time periods). In the third
layer, the Topic Representation Layer, we introduce a contextualized LLM-based Nearest Words
approach to generate word representations for the aligned topic clusters. This layer can also
incorporate class-based TF-IDF [55]. The following subsections provide a detailed definition and
implementation of each layer.

Figure 6.2: Architecture of ANTM

6.2.1 Contextual Embedding Layer (CEL)

The Contextual Embedding Layer (CEL) is responsible for providing a vector representation for
the document d in the corpus D. More formally, the embedding vector y for a document d is a
mapping CEL : d ÞÑ y P ℜz, capturing contextual and semantic information from the corpus D.
The document embedding represents words and documents in a low-dimensional feature vector
space, where the embedding dimension z is expected to be much smaller than the size of the
vocabulary (i.e., the number of unique words in D).

Implementation

CEL takes advantage of pre-trained LLMs (e.g., Data2Vec, GPT-4) to compute a contextualized
time-aware vector representation for each document. Pre-trained LLMs capture the meaning and
context of a document by using an attention mechanism to consider the context of words in a
document. As shown in Equation (6.1), given an input document d, the number u of tokens in d,
and hj the hidden state vector of the j-th token in d, the embedding y “ CELpdq of the whole
document d is then obtained by taking the mean of all the hidden state vectors of the tokens in d.
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CEL : D ÞÑ Y “ rhzsuz“1 “
1

u

u
ÿ

z“1

hz (6.1)

We argue that LLM-based embeddings implicitly capture the temporal context of the document
in addition to capturing its meaning. Indeed, the attention mechanism weights the importance
of each word in the context of a document. This context implicitly depends on the publication
period of the document since word contexts happen to vary over time.

6.2.2 Aligned Clustering Layer (ACL)

This layer is motivated by the belief that topic evolution occurs in cycles of steps as explained
by [162]. Therefore, we discretize these steps by time frames with intersections similar to [6,
131], but we use time-aware algorithms to account for the continuity of time and to model
evolving topics that emerge and fade over time. After performing transformer-based document
embedding on the corpus D, we can obtain a dynamic vector representation of D by applying a
Sliding Window Segmentation (SWS) process that divides D into a series of n overlapping time
frames tW 1, . . . ,Wnu. We then denote the set of documents published in the time frame W t by
Dt Ď D and the set of embeddings of Dt by Y t “ tCELpdq|d P Dtu. This layer aims to discover
evolving document clusters by sequentially grouping similar documents. This procedure is called
Partitioned Clustering (PC).

Definition 6.2.1. Let Dt be a set of documents in the t-th time frame of the document corpus D
and let Y t denote the set of embeddings of Dt. Partitioned Clustering PC : Dt ÞÑ tDt

iu clusters
the documents Dt by their embeddings Yt and returns a set of local document clusters Dt

i Ď D
for i “ 1 to kt where all document embeddings in Y t

i are similar. Y t
i is the set of embeddings of

the documents contained in cluster Dt
i .

Figure 6.3 shows two-dimensional document embedding vectors clustered by their cosine
distance for different time periods. The sequence of figures reveals evolution patterns and trends
of document clusters (topics) that may not be apparent when documents are grouped based on
their content. The documents from the DBLP dataset are embedded using BERT and sequentially
clustered in each time frame. The clusters of all periods are aligned to create evolving topics as
described in Figure 6.4.

To obtain a representation of the temporal evolution of these clusters, we apply a final step
that aligns the document clusters along all periods using a cluster linkage measure. We can use
different cluster linkage measures (single, average, centroid, complete) to estimate the similarity
of the vector embedding clusters Y t

i for local document clusters Dt
i . The result of each alignment

is a set of evolving document clusters Dk (EC) that contain semantically similar documents from
different time periods :

Definition 6.2.2. Let tDt
iu be the set of local document clusters obtained by PC. Cluster

Alignment CA : D ÞÑ tDku generates m subsets of documents Dk Ď D for k “ 1 to m and where
Dk is the union of a set of local document clusters (topics) Dt

i with similar embedding clusters
Y t
i .

Definition 6.2.3. Let tDt
iu be the set of local document clusters obtained by PC. Cluster

Alignment CA : D ÞÑ tDku generates m subsets of documents Dk Ď D for k “ 1 to m and where
Dk is the union of a set of local document clusters (topics) Dt

i with similar embedding clusters
Y t
i . Figure 6.4 shows the evolving clusters after the alignment.
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(a) 2000-2002 (b) 2002-2004 (c) 2004-2006 (d) 2006-2008

(e) 2008-2010 (f) 2010-2012 (g) 2012-2014 (h) 2014-2016

(i) 2016-2018 (j) 2018-2020

Figure 6.3: Partitioned Clusters

Figure 6.4: Evolving Clusters

Implementation

The Aligned Clustering Layer (ACL), similar to the other two layers of ANTM, can be implemented
using different clustering and alignment methods combined with scalable algorithms. As shown
in Figure 6.2, we implemented the ACL layer with density-based clustering techniques [163] to
cluster data points (embedding vectors) based on their distribution in the feature space. These
algorithms are particularly useful for identifying clusters of varying densities and arbitrary shapes.
The number of obtained clusters is defined by the parameters used to estimate the density. This
feature provides an advantage over non-parametric PDTMs that require a fixed number of topics
as input. The Aligned Clustering Layer is developed in the following three steps.

Aligned Dimension Reduction To overcome the curse-of-dimensionality problem of similarity-
based clustering methods on high-dimensional data, we first reduce the size of document embedding
vectors. The proposed solution uses AlignedUMAP [164] to align sequences of UMAP [47]
embeddings based on the documents shared between two consecutive time periods. These
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overlapping documents act as landmarks for aligning the different vector spaces defined for each
period and allow us to obtain globally coherent reduced-dimension vector representations.

Sequential Local Clustering After the aligned dimension reduction, a density-based clustering
algorithm is performed on each period data frame to separate all documents of a given period into
a set of local document clusters. We use HBDSCAN [161], a hierarchical version of DBSCAN [165]
which does not require a predefined number of clusters but generates and selects clusters based
on a notion of stability (the hierarchical clustering process slices the cluster hierarchy so that
the number of clusters is as close as possible to that of the next level in the hierarchy, while
constraining the cluster size to discard clusterings with too large and too few clusters). As shown
in Figure 6.3, each such local cluster describes a concept within a time frame.

Cluster Alignment The following step involves aligning consecutive local clusters that were
achieved in the previous step. As the document embedding vectors of all time frames are in the
same space, we can aggregate each cluster by considering their centroids. We use the centroid
linkage method [166] to align document clusters from different periods by clustering the cluster
centroids using HDBSCAN. An example of the output for this step is shown in Figure 6.4.
All documents within an evolving cluster share the same color and are the results of a local
clustering step for each time period (x-y plane) followed by a cluster alignment step along time
(z-axis). We can see that aligned clusters that have the same color are rather vertically aligned
through consecutive time frames ("slices"). The representation of these Evolving Clusters offers
valuable insights into the progression of topics over time, as depicted in Figure 6.9 and Figure 6.8.
Figure 6.8 highlights a noteworthy shift in news coverage, from focusing on Boko Haram in
Nigeria in 2015, to ISIS in Iraq and Baghdad in 2016, and later to events in Kabul, Afghanistan,
involving the Taliban between 2017 and 2019. Meanwhile, Figure 6.9 demonstrates the emergence
of terms like CNN, Lung, and Diagnosis between 2018 and 2020, aligning with the COVID-19
pandemic and advancements in computer vision research. Another alternative for HDBSCAN is
to use the K-Nearest Neighbors (KNN) clustering method based on cosine similarity.

KNN clustering allows us to introduce a similarity threshold parameter to determine the
strength of the alignment links. A high threshold results in fewer alignments, highlighting topics
that barely change over time. On the other hand, a low threshold produces more alignments,
including topics with significant changes over time and lower similarity values. This enhances the
versatility of the topic alignment step and helps to improve the representation quality of evolving
topics. It also helps to avoid aligning topics of the same time periods and to focus only on aligning
the topics of each time period with their adjacent time periods. Figure 6.5 illustrates an evolving
topic about the Ebola outbreak using HDBSCAN. We can see that the topic representation
(defined in Section 6.2.3) changes slightly over time, and most of the topic words are stable and
repeated in the next time period. At time period 1, every word is considered as new (green color).
For the following periods, a word contained in the previous period and the next one is considered
as stable (grey color), and a word not in the next period is considered as disappearing (red color).
However, if we align topics using KNN which is more flexible than HDBSCAN, we can obtain
a richer evolving topic containing a larger set of words about various diseases, see Figure 6.6
where the similarity threshold has been set to 0.6 which is rather low. If we increase the similarity
threshold from 0.6 to 0.8, the alignment in Figure 6.6 splits into multiple smaller alignments that
showcase the evolution of specific diseases, and the Ebola outbreak is one of them (Figure 6.7).
This increases the versatility of the topic alignment process, which can be configured based on
application and user preferences.
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Figure 6.5: Evolving Topic regarding Ebola Outbreak based on HDBSCAN topic alignment.

Figure 6.6: Evolving topic about diseases and outbreaks- Alignment using KNN (0.6 unit threshold)

6.2.3 Representation Layer

The Representation Layer (RL) is responsible for generating word representations for each local
topic document cluster in each time frame. The goal of this layer is to identify the most relevant
terms or term phrases to summarize the main ideas or themes of each document cluster.

Definition 6.2.4. The topic Representation Layer (RL) computes a list of m terms ttriju
m
r“1

that describe the semantic contents of each document cluster Dij .

Implementation

There exist various ways to represent a set of documents by a set of terms [167]. One way is to use
a method called class-based Term Frequency-Inverse Document Frequency (c-TF-IDF) [16, 55],

(a) Evolving topic 1 - Ebola Outbreak (b) Evolving topic 2 - Measles Outbreak

(c) Evolving topic 3 - HIV

Figure 6.7: Topic alignment using KNN (0.8 unit threshold)
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Figure 6.8: Evolution of New York Times News on Foreign Terrorist Activities.

Figure 6.9: Evolution of Computer Science Research on Medical Science based on DBLP documents.

which is a variation of TF-IDF that takes into account the class labels of documents. c-TF-IDF
weights the terms in a cluster not only by their frequency but also by their relevance to a particular
cluster. c-TF-IDF ensures that each word of a topic representation occurs in at least one document
of that topic. Examples of outputs for this step are shown in Figure 6.9 and Figure 6.8. We
propose to use an LLM-based Nearest Words approach similar to [24] that computes joint word
and document embeddings over a document cluster and finds the m closest words from the centroid
of the document embeddings. LLM-based Nearest Words generates a vector representation for
each document by averaging its word vectors. Subsequently, it derives a contextualized vector
representation for each word through max-pooling across all available vectors for that word
across all documents. Max pooling captures the diversity of various contexts of a given word
across different dimensions. As shown in Figure 6.10, the proposed topic representation method
achieves higher median coherence compared to c-TF-IDF and the non-contextualized Nearest
Words representations, which use generic word embeddings without considering the context of
the words in each document, as proposed in [24].

6.3 Experiments

We compare ANTM with four other dynamic topic models on three datasets. Our experiments
aim to demonstrate ANTM’s performance in terms of topic coherence and diversity relative to
state-of-the-art competitors and to illustrate its capability for exploratory topic evolution analysis.

Figure 6.10: Coherence value distributions of non-contextual Nearest Words, contextual Nearest Words,
and c-TF-IDF
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Table 6.1: Datasets

Dataset Documents Tokens Vocabulary Date Range

DBLP 200K 18.5M 144K 2000-2020
arXiv 70K 1.17M 12.6K 2000-2022

NYT News 210K 5M 61K 2012-2022

Besides, we provide a comparative study that examines ANTM under different settings for each
layer in different scenarios.

6.3.1 Datasets

We use three datasets in the experiments. The first dataset is the DBLP [168] archive of 200K
scientific articles (title and abstract) published between 2000 and 2020. DBLP is an open
bibliographic database, search engine, and knowledge graph that archives computer science
publications. The second dataset is a 70K sample of documents (title and abstract) extracted
from arXiv [169] and published between 2000 and 2022. The last dataset is a collection of 210K
articles [170] from the New York Times (NYT) published between 2012 and 2022. The NYT
dataset includes historical and current articles on a variety of topics and includes text, images,
and metadata such as the article’s headline, author, and publication date. The statistics of the
datasets are summarized in Table 6.1.

6.3.2 Baseline models

The performance of ANTM is compared to four other dynamic topic models. The first model is
DTM [6], which has been widely used for various applications such as public opinion tracking [171].
The second model is D-ETM [154], which extends DTM with word embeddings to improve topic
quality and performance. The third topic model is TOT [130], which is a variation of LDA
and captures how the co-occurrence patterns of words change over time. The last model is
BERTopic [16], a clustering-based topic model that uses a static process for clustering document
embeddings while dynamically representing topics.

6.3.3 Evaluation Metrics

We evaluate the performance of each topic model in terms of human interpretability using Topic
Coherence (TC) [99, 120, 172] and its diversity by Topic Diversity (TD) [154, 173].

Topic Coherence (TC) TC, as defined in [99] with co-occurrence value CV , is a variation of
Normalized Point-wise Mutual Information (NPMI)[102] that averages the co-occurrence values
of word pairs (tri , t

s
i ) in all topics i over N topics.

Topic Diversity (TD) For this metric, we use the Proportion of Unique Words (PUW)
method [41] defined as the vocabulary size divided by the total number of words within a set of
topics. Topics within a low-diversity topic set share many words, whereas a highly-diverse topic
set contains topics that have few words in common.
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Table 6.2: Segmentation setting

Dataset & Time Frame Sizes Length Overlap #Frames

DBLP Documents 3 Years 1 Year 10
arXiv Documents 4 Years 1 Year 10

NYT News 4 Years 1 Year 10

6.3.4 Experimental Setup

ANTM We used two embedding models from SBERT [52] in the contextual embedding layer
(CEL) of ANTM. The two configurations with these models are called ANTM-large (using
all-mpnet-base-v2 ) and ANTM-mini (using all-MiniLM-L6-v2 ). We also used the Data2Vec
pre-trained model (facebook/data2vec-text-base) [174] in our study. We then split the document
embedding vectors into a series of time frames to explore the change in document contents. The
setting of the segmentation step is summarized in Table 6.2. These segmentation values, as
suggested in [175], provide a comprehensive view of the data and ensure that changes over time
are captured in the analysis.

Afterward, we chose the hyperparameters for dimension reduction (using AlignedUMAP)
and sequential document clustering (using PC). As suggested in [16, 24, 160], the cosine
similarity metric, with 5-dimensional output, was chosen for the dimensionality reduction setting
of AlignedUMAP. We then performed HDBSCAN on each time frame with Euclidean distance
and a minimum size of 10 documents per cluster to create a set of semantically similar document
clusters for each period (Figure 6.3). Since all document embeddings are in the same vector
space, we could then align the generated clusters by again using HDBSCAN on the centroid of
all document clusters with Euclidean distance and a minimum number of 2 clusters to obtain
evolving clusters for each dataset (Figure 6.4). Finally, we represented the documents of each
cluster with a set of m “ 10 words using the c-TF-IDF (Figures 6.8 and 6.9). The common
parameters and methods are chosen similarly to BERTopic for fair comparison.

Baselines DTM, D-ETM, and TOT were configured with 20, 50, and 100 topics respectively,
and applied to the titles and abstracts of the DBLP, arXiv, and NYT News datasets. The topic
numbers were determined based on the number of topics generated by ANTM in an unsupervised
manner. Additionally, we ran BERTopic using the same sentence transformer models as the
proposed model for a fair comparison. The default configurations were used for the rest of the
hyperparameters of BERTopic.

6.3.5 Results

The performance of dynamic topic models can be analyzed from two perspectives. First, we
observe the quality of topics in terms of coherence and diversity within each time frame (period-
wise analysis). This aims to assess the ability of dynamic topic models to describe temporal
topics in a diverse and coherent manner. The second perspective analyzes the quality of word
representations within each evolving topic (topic-wise analysis) and compares the ability of
dynamic topic models to represent the evolution of each dynamic topic over time.

As shown in Table 6.3, ANTM achieves the highest Topic Quality (TCˆTD) scores among
the different baseline variants in all three datasets. However, ANTM is 2.8 to 4.5 slower than
BERTopic depending on the used embedding model and due to the increased number of topic
clustering steps. Yet, ANTM’s runtime for producing 62 topics is respectively 8, 30, and 43 times
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faster than its competitors when generating 50 topics.

Table 6.3: Performance comparison of ANTM and baselines

ArXiv DBLP NY Times

Model Embedding #T TC TD TQ t(s) #T TC TD TQ t(s) #T TC TD TQ t(s)

- 20 0.56 0.71 0.40 16194 20 0.58 0.68 0.40 15485 20 0.57 0.95 0.54 3071
- 50 0.61 0.72 0.44 23897 50 0.61 0.74 0.45 33541 50 0.46 0.98 0.45 6535DTM
- 100 0.61 0.79 0.48 46195 100 0.64 0.77 0.49 61140 100 0.38 0.99 0.37 13255
- 20 0.33 0.15 0.05 14071 20 0.33 0.07 0.03 20385 20 0.42 0.13 0.06 2680
- 50 0.32 0.07 0.02 15833 50 0.33 0.04 0.02 45295 50 0.41 0.15 0.06 6490TOT
- 100 0.32 0.07 0.02 29205 100 0.33 0.05 0.02 91725 100 0.38 0.14 0.06 12146

W2V 20 0.45 0.88 0.40 2925 20 0.44 0.85 0.37 12352 20 0.48 0.98 0.47 8257
W2V 50 0.47 0.69 0.32 4625 50 0.49 0.71 0.34 19332 50 0.43 0.79 0.34 12907D-ETM
W2V 100 0.49 0.48 0.23 6840 100 0.45 0.61 0.28 36471 100 0.38 0.52 0.20 20133
Mini 681 0.68 0.88 0.60 192 1075 0.70 0.78 0.54 342 1539 0.60 0.91 0.54 340BERTopic Large 812 0.70 0.89 0.63 90 1472 0.71 0.81 0.58 311 1408 0.63 0.92 0.57 143

Mini 62 0.72 0.94 0.67 544 130 0.77 0.91 0.70 1398 118 0.62 0.93 0.57 1549ANTM Large 172 0.59 0.92 0.54 405 261 0.70 0.93 0.65 1869 104 0.63 0.92 0.57 1660

Period-Wise Quality Comparison The goal of the period-wise analysis is to determine
whether aligned document clustering, applied separately for each time frame, results in better
topic quality per period. As shown in Figure 6.11, ANTM overall has higher quality scores
compared to D-ETM, DTM, and TOT in all three datasets. In contrast to BERTopic, which
exhibits ascending values across consecutive time frames, our proposed method maintains a
stable consistency. The variability observed in BERTopic’s performance stems from its global
clustering approach with uniform parameters, resulting in uneven document distributions within
each cluster. It is noteworthy, though, that the quality of ANTM experienced a decrease in the
last time frame. We argue that this decrease can be attributed to the data scarcity for the last
time frame within the datasets. Moreover, we observe that DTM generates topics with higher
consistency compared to D-ETM, even without the use of embedding models. Lastly, it is worth
noting that TOT produces the lowest-quality evolving topics across all the datasets.

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
antm-large_172
antm-mini_62
bertopic-large_812
bertopic-mini_681
detm_50
detm_100
detm_20
dtm_100
dtm_50
dtm_20
tot_50
tot_100
tot_20

Time-Wise Quality Scores -ARXIV

Time

S
co
re
s

(a) ArXiv

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

antm-large_261
antm-mini_130
bertopic-large_1472
bertopic-mini_1075
detm_100
detm_50
detm_20
dtm_20
tot_100
tot_20
tot_50
dtm_100
dtm_50

Time-Wise Quality Scores -DBLP

Time

S
co
re
s

(b) DBLP

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
antm-large_104
antm-mini_118
bertopic-large_1408
bertopic-mini_1539
detm_50
detm_100
detm_20
dtm_50
dtm_20
dtm_100
tot_20
tot_50
tot_100

Time-Wise Quality Scores - NYT NEWS

Time

S
co
re
s

(c) NYT News

Figure 6.11: Period-wise Quality Comparison

Topic-Wise Quality Comparison The objective of topic-wise analysis is to assess whether an
evolving topic, which contains topics that are semantically close to each other, can nevertheless
effectively represent the evolution of the represented document clusters. As shown in Figure 6.12,
topic quality (TQ) is calculated for each evolving topic, and their distributions are plotted across
each model on all three datasets. These figures lead to various observations. First, as depicted in
Figure Figure 6.12 (b) and (c), ANTM consistently generates the highest quality evolving topics in
both the DBLP and NYT News datasets. However, in the case of ArXiv, BERTopic outperforms
the ANTM-large model in terms of topic-wise quality, although it still falls short of the quality
achieved by the ANTM-mini model. The second observation highlights that DTM consistently
generates higher-quality topics compared to D-ETM, even without the use of embedding models.
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Figure 6.12: Topic-wise Quality Comparison

Table 6.4: Variation Comparison of ANTM

CEL ACL RL

SWS Sliding Window Clustering c-TF-IDF

Embedding Model Window
length

Overlap
length

AlignedUMAP
#Neighbor

HDBSCAN
Min Cluster #Words #T TC TD TQ t(s)

5 60 0.74 0.93 0.70 7475 2 25 25 10 60 0.61 0.89 0.55 752
5 66 0.71 0.93 0.66 474all-MiniLM-L6-v2

4 1 20 20 10 66 0.56 0.90 0.51 478

5 75 0.74 0.92 0.68 7405 2 25 25 10 75 0.59 0.88 0.52 806
5 80 0.68 0.92 0.63 505all-mpnet-base-v2

4 1 20 20 10 80 0.54 0.89 0.48 547

5 10 0.40 0.65 0.26 8015 2 25 25 10 10 0.30 0.60 0.18 823
5 8 0.39 0.77 0.30 503data2vec

4 1 20 20 10 8 0.30 0.73 0.22 531

Lastly, it is worth noting that TOT consistently produces the lowest quality evolving topics across
all the datasets.

Variation Analysis As shown in Table 6.4, we compare different configurations of ANTM,
similar to an ablation study, by systematically varying the values of one or more algorithm
parameters while keeping other aspects constant. By observing how changes in parameter values
affect the performance of the model, we can identify the most influential parameters and their
optimal settings. In this comparative analysis, we have selected three distinct language models
for the contextualized embedding layer, allowing us to investigate the impact of pre-trained
models. Additionally, we have explored two distinct configurations for the aligned clustering
layer, facilitating a comparison between scenarios involving long time frames with substantial
overlap and those with shorter time frames and reduced overlap. Furthermore, we have examined
two distinct settings for the representation layer to assess the model’s representational capacity
concerning the number of words. The details of this comparative analysis are provided in Table 6.4.
In our findings, it becomes evident that ANTM’s performance significantly improves when utilizing
BERT as the embedding layer. Moreover, employing larger time frames with higher overlap yields
superior results, and intriguingly, a representation layer comprising five words outperforms one
with ten words.

Qualitative Comparison The qualitative comparison in topic modeling is crucial for making
sense of the results, refining models, validating them against domain knowledge, and ultimately
extracting meaningful insights from textual data. While quantitative metrics provide valuable
guidance, qualitative assessment is essential for ensuring the relevance and human interpretability
of the topics generated by these models. As shown in Table 6.5, a qualitative comparison between
ANTM and the baselines is provided. This comparison includes Temporal Labeling (the ability
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Table 6.5: Qualitative Comparison

DTM TOT D-ETM BERTopic ANTM

Temporal Labeling " ✗ " " "

Non-parametric ✗ ✗ ✗ " "
Semantization ✗ ✗ Word2Vec LLMs LLMs

Coherence Normal Very Low Low High Very High
Diversity Low Low Normal High Very High
Runtime Very High High Normal Very Low Low

Complexity Low Low Normal High High
Scalability Very Low Very Low Low Normal High

Adaptability Very Low Very Low Low High High

Figure 6.13: Formation of Non-informative Clusters

to represent each evolving topic corresponding to a time period), Semantization (the ability to
understand the semantics behind the text representation), Topic Coherence and Diversity of
labels as discussed in Table 6.3, Runtime (the computational efficiency of each model, considering
the time required to process large datasets and generate topic models), algorithmic Complexity
(including the number of hyperparameters and algorithmic complexity), Scalability, which assesses
the ability to handle large corpora, and Adaptability with different algorithms concerning the data
and the domain. These aspects are informed by our methodological understanding of different
topic modeling approaches, which has allowed us to identify the key dimensions along which these
models can be compared and contrasted. By considering these qualitative aspects, researchers
and practitioners can gain a deeper understanding of the strengths and limitations of different
topic modeling approaches, ultimately selecting the most suitable model for their specific use
case.it

Limitation Initial experiments have shown that the hyperparameters need to be chosen carefully
to avoid the formation of large topics that group together unrelated topics during certain time
periods, as shown in Figure 6.13.

6.4 Conclusion

Existing dynamic topic models ignore certain temporal variations of evolving topics by configuring
a global structure for dynamic topics, such as the same number of document clusters in each
period. Furthermore, many of these models necessitate computationally expensive operations
when dealing with large-scale corpora, which can be a significant bottleneck. These limitations
directly affect the observation of topic evolution and reduce the coherence and diversity of evolving
topics, which are sequentially represented. In this chapter, we proposed a family of dynamic
neural topic models called Aligned Neural Topic Models (ANTM), which combines novel data
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mining algorithms to provide a modular framework for discovering evolving topics. Based on a
series of experiments on three distinct datasets we can conclude that ANTM outperforms the
state-of-the-art dynamic topic models in terms of topic coherence and diversity. In Part III, we
will leverage the insights gained from topic models and dynamic topic models to explore the
evolution of topics and their impact on the progression of scientific knowledge. By analyzing how
topics transform over time, we aim to uncover patterns in scientific advancement and discourse.
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Science Evolution Modeling
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“ An intellectual? Yes. And never deny it. An intellectual is
someone whose mind watches itself. I like this, because I am
happy to be both halves, the watcher and the watched. "Can
they be brought together?" This is a practical question. We
must get down to it. "I despise intelligence" really means:
"I cannot bear my doubts. ” Albert Camus

Motivation

In Parts I and II, we focused on the complexity of topic models, explored various evaluation
metrics, and examined dynamic topic models. These foundational concepts have equipped us
with a robust framework to comprehend how topics evolve over time. Building on this foundation,
we now turn our attention to the analysis of scientific evolution, focusing on the different types
and methodologies used to study how scientific ideas and disciplines develop and transform. This
progression from understanding basic topic modeling to exploring the dynamic nature of topic
evolution sets the stage for a deeper investigation into the patterns and trends that characterize
the evolution of science.

Organization

In Chapter 7, we first explore topic evolution through various analysis tasks proposed in the
literature. Following this chapter, we delve into the evolution of science in Chapter 8 by using
a novel categorization approach for a more nuanced comprehension of scientific progression.
Building on these studies, we contribute to the study of science evolution by proposing innovative
frameworks in Chapters 9 and 10 that integrate dynamic topic models with citation networks and
advanced deep learning techniques such as dynamic graph neural networks and reinforcement
learning. These novel frameworks aim to offer more sophisticated and interconnected perspectives
on the mechanisms driving scientific evolution.

Contributions

Our work presents innovative deep-learning methodologies for analyzing the evolution of topics
within scientific archives. In Chapter 9, we propose a new definition of emerging topics and
introduce a unique concept of citation context, which facilitates the early identification of these
topics. In Chapter 10, we offer a novel definition of paradigm shift and use Q-Learning to model
the transitions in the evolution of topics.

The first contribution has been presented at "BDA 2023: 39ème Conférence sur la Gestion
de Données – Principes, Technologies et Applications" and published/presented in Rahimi, H.,
Naacke, H., Constantin, C., Amann, B. ATEM: A Topic Evolution Model for the Detection of
Emerging Topics in Scientific Archives. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran,
M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023, Studies
in Computational Intelligence, Springer. Additionally, a demonstration paper on ATEM will be
presented at BDA 2024. The second contribution is in preparation for submission.
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Chapter

7
Topic Evolution Models and
Analysis

Topic evolution analysis has many applications and, before focusing on the evolution of research
topics within scientific archives, it is crucial to study the related work in other areas like trend
analysis in social media or event tracking in news media. This comprehensive understanding
serves as a guide for discovering and investigating the evolution of science, enabling us to draw
on methodologies and findings from diverse areas to inform our analysis of scientific progress.

Chapter content
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Topic Trend Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Topic Shift Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4 Topic Evolution Network Analysis . . . . . . . . . . . . . . . . . . . . 69
7.5 Topic Emergence Detection . . . . . . . . . . . . . . . . . . . . . . . . 70
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Introduction

Topic evolution refers to the modeling and discovering how topics change, emerge, or fade over
time from time-stamped document collections [11] including academic publications [176], news
articles, social media posts [177, 178].

The underlying topic models and analysis tasks vary depending on the underlying application
and data. In social networks, topics often manifest as simple terms such as hashtags, which
capture the essence of trending discussions. In news media, topics are typically represented by
events or entities, leading to the development of event-based topic models that can track news
stories and key figures over time. Conversely, in scientific articles, topics are more complex,
represented by weighted term vectors that encapsulate specific research topics. Topic analysis
tasks include topic trend detection, topic emergence analysis, sentiment analysis, and semantic
shift detection. Each domain necessitates a tailored approach to topic modeling, reflecting the
unique nature and requirements of the information being analyzed.

It is important to distinguish between dynamic topic models (DTMs, Chapter 5) and topic
evolution models. Dynamic topic models identify and track topics over time without being tied
to a specific analysis task, providing a broad understanding of how topics evolve in a corpus. In
contrast, topic evolution models are designed for targeted analysis, focusing on specific questions
or tasks related to topic changes. These models can leverage the evolving topics generated by
DTMs to inform their analyses, allowing for a more directed exploration of how topics develop in
relation to particular objectives.
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In the state of the art, we have identified four primary tasks that are commonly investigated
in relation to topic evolution. These tasks include tracking the emergence and development of
topics over time, understanding the shifts in topic prevalence, detecting the fusion or splitting of
topics, and identifying the underlying factors driving topic changes. Each task addresses a distinct
aspect of how topics evolve, highlighting the multifaceted nature of topic evolution modeling and
its application-specific requirements. The most important tasks are explained as follows.

7.2 Topic Trend Analysis

Topic trend analysis has been one of the first kinds of analysis conducted to understand topic
evolution. Topic trend analysis examines the temporal evolution of various topic properties, such
as popularity or interest (measured by "Likes" in social media) and importance or utility (indicated
by the number of citations) within a document stream. Topic trend analysis has been used in
various scenarios and applied to a variety of document streams, such as newspaper [179], social
media [178] and US Patent database [180] to detect emerging trends in scientific literature [181].

Manual trend analysis In the 1970s, identifying trends in topics involved meticulously
analyzing the content of published articles [182]. Researchers manually defined topic areas by
closely examining article contents, and summarizing trends by tallying the number of articles
on a particular topic over time. Although expert-driven content analysis generally produces
high-quality results, the overwhelming volume of today’s publications makes it impractical to
rely solely on human annotation for summarizing or discovering new topics. Topic trends can be
analyzed and measured in several ways and we will discuss some of the most important methods
below.

Counting the number of documents Most research on tracking topic trends over time has
followed a straightforward approach of counting the number of documents associated with each
topic on an annual basis [183–185] and analyze how the topic-document distribution evolves over
time. Although this method offers a broad perspective, it is crucial to acknowledge its limitations;
the approach may oversimplify complex phenomena, potentially obscuring deeper insights into
the underlying factors driving topic trends, including the nuanced aspects of topic relevance.

Topic over Time (ToT) The ToT model [130] (Chapter 5) not only functions as a dynamic
topic model but also enhances the evolution analysis by incorporating a beta distribution to
represent the temporal distribution of each topic. This allows TOT to reveal complex trends, such
as specific activity peaks or gradual changes in relevance over time, providing deeper insights into
the dynamics of topic relevance. More specifically, each topic is represented by two distributions:
a multinomial distribution over words, capturing the vocabulary associated with each topic
(similar to LDA), and a beta distribution over timestamps, capturing the temporal distribution
of documents associated with each topic. This enables a more nuanced understanding of when
topics are most active or relevant.

Document Cluster Tracking In the past decade, clustering-based topic models have had a
significant impact on the field of topic modeling and evolution analysis as explained in Chapter 2.
Document Cluster Tracking refers to monitoring and the continuous flow of documents to find and
follow additional content related to the predefined topics based on a set of initial seed documents
and their associated topics.
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For instance, [179] explores a supervised Topic Tracking that incorporates an unsupervised
cluster-based algorithm. This algorithm assigns each document to a cluster based on document-
cluster similarity scores. Initially, if a document is labeled as a seed document for a specific topic,
any new document that subsequently joins the same cluster as the seed document is considered a
potential candidate for being labeled as on-topic for that particular topic.

[186] investigates how temporal metadata can enhance Topic Detection and Tracking (TDT)
systems by clustering news articles based on event timing. The authors develop a neural method
that combines temporal and textual information to improve event detection, demonstrating
significant improvements in clustering performance through the use of time-aware document
embeddings.

7.3 Topic Shift Analysis

Topics are fundamentally clusters of words that collectively convey specific semantic meanings [187].
Topic Shift is a phenomenon described by [188] that refers to the changes in the semantics
meanings of topic words over time.

There has been a growing focus in recent research on comprehending and identifying these
shifts in word semantics. For instance, the word "cloud" has evolved from primarily referring
to a weather phenomenon to commonly describing internet-based storage and services. This
shift in word semantics has significant implications for understanding changes in language and
communication in the digital age.

Words can undergo semantic changes in two primary ways: they may adopt entirely new
meanings that supplant their old ones, or they may gain additional meanings while retaining their
original sense [189]. [190] categories studies of these shifts within into two classes: synonymy
detection and polysemy detection. Synonymy detection monitors the use of different words with
the same meaning over time while polysemy detection monitors different meanings expressed by
the same word over time.

To quantitatively measure these semantic shifts, researchers commonly use distributional
semantic models [191–193]. These models assess word similarity through vector space repre-
sentations, where each word is positioned according to its contextual usage. Previous studies
have focused on semantic shifts to enhance applications in natural language processing, such as
improving document retrieval through time-aware query expansion in historical datasets. These
analyses typically consider words in isolation, without linking them to broader topics. In topic
evolution analysis, words that migrate between topics do more than just transfer existing lexical
information; they foster the creation of new ideas within their new contexts [194]. A word that
moves into a different topic is likely to convey fresh concepts, shaped by the unique context of
its new environment. This process of semantic transformation underscores the dynamic nature
of language and its capacity for generating novel meanings as words traverse different topical
landscapes.

7.4 Topic Evolution Network Analysis

Constructing graphs or networks is one of the widely used methods to study topic evolution.
Topic evolution networks illustrate a dynamic visualization of how topics develop, transform, and
interrelate over time. These networks not only track the progression and change of individual
topics but also capture the intricate relationships and structural shifts (split, merge) that occur
among topics as they evolve.

Typically, these transformations are modeled using directed acyclic graphs that link and
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align topics identified in documents from various time periods. By examining these networks,
researchers can gain insights into the temporal dynamics of topics, understanding both their
internal changes and how they influence and are influenced by other topics in the broader context.

Topic evolution networks can represent evolution in different ways. [195] defines a topic as
a unit of evolutionary change in content. Topic nodes are discovered with the time of their
appearance in the corpus and connected to form a topic evolution graph using a measure derived
from the underlying document network. In "phylomemetic" topic networks [196] each topic is
represented by a cluster of terms that co-occur in a set of documents in a given time period. Topics
from different time periods are connected by a matching operator to build a temporal network
for identifying emerging, branching, merging, and declining fields. A similar approach was used
in [197] to propose an extended graph model for querying evolutionary patterns. The authors
of [198, 199] use a Hierarchical Dirichlet Process-based (HDP) model and a temporal similarity
graph(using Bhattacharyya distance on the topic vector representation) to model complex topic
changes. [200, 201] also applies a network-based topic evolution approach to represent topics by
their past neighbors or ancestors and their structural properties in a temporal sequence of topic
co-occurrence networks. This representation simultaneously captures content transition and topic
correlation and detects complex topic evolution events such as merging, splitting, and emergence.
In particular, emerging topics are represented as new nodes, where the context of new topics
can be inferred from the contexts and past behavior of their neighboring nodes. TermBall [202]
builds a weighted dynamic network of co-occurring keywords and extracts topic subgraphs by
performing community detection methods. These subgraphs can identify past topic evolution and
predict future topic evolution based on structural and temporal features of topic structures. The
dynamic Bibliographic Knowledge Graph (BKG) [203]is the result of the merging of bibliographic
entities (PMC) with a biomedical and life sciences thesaurus (MeSH). Using different types of
topic, paper, author, and venue rankings, together with pre-trained node embedding and various
pooling techniques, it can be applied to predict topic hotness.

The predictive power of evolutionary topic networks is also validated through the use of
community detection algorithms, where the Advanced Clique Percolation Method (ACPM)
classification algorithm [204] has been proposed to identify emerging topic correlations. Topic
clusters with notable recent collaborations, found in the semantically enriched topic evolutionary
networks and represented by the core publications and author information, are considered as
ancestors of a novel topic in its embryonic stage [205].

7.5 Topic Emergence Detection

One of the most useful analyses of the evolution of science is the detection of topic emergence,
which involves the identification of new ideas [206]. Emerging topics are ideas or issues that
gain attention or become more prominent in a particular field or area of interest and detecting
emerging topics in science has far-reaching implications for society, as it provides a way to track
the progression of scientific fields and shape future research and technological development.

Topic emergence detection typically employs unsupervised clustering methods to group similar
documents and reveal novel topics as they arise. This task has been described by various
communities using different terminologies [207–209] and has been applied in various fields such as
business [210, 211], information science [12] or public relations intelligence [212].
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7.6 Conclusion

The integration of dynamic topic models and advanced algorithms has significantly enhanced the
analysis of topic evolution, providing deeper insights into how subjects change and develop over
time. These sophisticated tools allow researchers to track shifts in discourse, identify emerging
trends, and understand the underlying factors driving these changes. In this chapter, we reviewed
a wide range of studies that explore the evolution of topics on a broad scale, highlighting different
methodologies and findings. This comprehensive overview sets the stage for the next chapter,
where we will narrow our focus to examine the evolution of science specifically. By delving into
this specialized area, we aim to uncover patterns and dynamics unique to scientific progress and
innovation.
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Chapter

8
Science Evolution Analysis

In this chapter, we focus on the evolution of science, categorizing and investigating it thoroughly.
We will focus on the patterns of scientific progress, examining how various fields of study have
developed and intersected over time. Moreover, we study various topic evolution models that aim
to uncover the underlying trends and shifts within the scientific literature, providing a detailed
analysis of how knowledge and innovation have evolved. This focused investigation will offer a
deeper understanding of the mechanisms driving scientific advancement and the interconnected
nature of different scientific domains.
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8.1 Introduction

The evolution of topics within scientific domains has been thoroughly examined in the fields
of scientometrics and data mining. There are various philosophical theories and definitions for
science evolution. For example, Popper considers science evolution as a Bayesian inference process
that updates the logical possibility of falsification [7], or Kuhn introduces the notion of Darwinian
epistemology where science evolution is a Darwinian selection process of theories [1] characterized
into phases of normal, crisis, revolution, and the new normal phase. These theories try to explain
the evolution of scientific domains and describe their relations and interactions with different
semantics.

Several approaches to analyzing science evolution in scientific archives have been proposed in
the literature. We define a scientific domain as a scientific evolving topic that changes over time
and we categorize these approaches into two classes based on different factors that contribute to
the evolution of scientific domains: Single-Domain (SD) Evolution Analysis and Cross-Domain
(CD) Evolution Analysis. These changes include influencing other topics, being influenced by them,
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fading away, or becoming prominent. Single-Domain (SD) evolution refers to the development
of scientific knowledge and methods within a particular domain independent of external factors,
while Cross-Domain (CD) evolution refers to the interaction and cross-fertilization of different
scientific domains leading to new insights and discoveries. Single-domain-based approaches
are generally able to identify trends in the use of specific terms or phrases [127], but may not
capture the broader context and relationships between scientific concepts. On the other hand,
cross-domain-based approaches can capture the relationships between scientific articles [213] but
are less effective at identifying trends in the usage of specific terms or phrases. In the following
section, we thoroughly investigate these categorizations.

8.2 Single-Domain Evolution

Single-domain evolution analysis (SD) aims to describe the progression of published content and
citation activity within a specific scientific field. This analysis is frequently conducted through
the temporal analysis of topics. The temporal dimension can be inherently integrated into the
characteristics of topic models, such as dynamic topic models, or implemented as an additional
algorithmic layer on top of a static topic model like LDA. Additionally, some methodologies focus
on temporal graph analysis across different domains. In this section, we introduce these methods
and explore their state-of-the-art developments.

8.2.1 LDA-based Analysis

The idea of using LDA for science analysis is particularly intriguing because LDA is inherently
static and does not account for temporal dynamics in its latent discovery process. This makes
the integration of temporal elements an innovative approach to uncovering how topics evolve over
time. Indeed, when applying LDA-based topic models to a complete corpus, the outcome is a
document-topic matrix. This matrix represents the distribution of topics across each document,
effectively indicating how much each topic contributes to the corpus. Given that each document
is associated with a timestamp, these contributions can be aggregated over specific time periods
to reveal trends in topic popularity. By analyzing these aggregated contributions over time,
researchers can track how the prominence of different topics evolves throughout the dataset.

For instance, the authors of [214] apply LDA on the ACL Anthology (1978-2006) to study
trends in Computational Linguistics. They found that topics at three major conferences have
become increasingly similar over time, supported by analyzing the Jensen-Shannon divergence
[215] of their topic distributions.

[216] uses LDA and regression analysis to explore topic evolution in astrophysics from 1992 to
2011. They compare topic popularity and duration between arXiv preprints and Web of Science
(WoS) papers. The analysis showed that topics in WoS lose popularity sooner than those in arXiv,
and open-access preprints exhibit stronger growth compared to traditional publications.

Some works extend LDA and propose novel architectures to analyze scientific evolution. For
instance, [217] investigates the development of Cognitive Science over 30 years using an LDA-based
topic model with a topical weighted-contribution method. The authors analyze the weighted
contributions of topics year by year among 3,104 articles published from 1980 to 2014. This
approach allows them to map the evolving landscape of the field through detailed topic trend
analysis.

[114] implements a Gibbs sampling-based version of LDA to analyze a dataset of 28,154
abstracts from the Proceedings of the National Academy of Sciences (PNAS) spanning the years
1991 to 2001. The authors define a technique to determine the optimal number of topics by
employing Bayesian model selection focused on log-likelihood [218]. To track how these topics
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evolve over time, the authors conduct a trend analysis on the distribution of topics across the
documents each year.

8.2.2 DTM-based Analysis

This approach employs dynamic topic models (DTM) that reflect the evolution by discovering
latent semantic structures of the documents published in different time periods. For instance,
Leap2Trend [219] relies on temporal word embeddings to track the dynamics of similarities
between pairs of keywords, their rankings, and the respective uprankings (ascents) over time.
Another example is [220] which proposes to use of a time-stamp-based discounting learning
algorithm to track online topics by forgetting out-of-date publications.

8.2.3 Graph-based Analysis

Graph-based topic models take advantage of topic networks to analyze the evolution of a single
domain [221, 222]. These models are mainly used for the design of digital libraries and social media
platforms, as well as the evaluation of scientific contributions and policies [209]. For instance,
CiteSpace II [223] is one of the first frameworks for detecting and visualizing evolution patterns
in scientific archives. It applies various graph analysis methods such as burst detection and
betweenness centrality to analyze highly cited publications within a scientific domain. Another
example is the Inheritance Topic Model (ITM) [222], which is an iterative topic evolution learning
framework that extends LDA with citation networks. [224] proposes an alternative topic modeling
method conscious of the topical correlation in the academic domain by introducing the notion of
the common interest authors (CIA1), defining a topic as a set of shared common research interests
of a researcher group by citation. Similarly, [225] introduces an LDA-based topic model that
utilizes citation counts to measure the impact of topics. The authors define a graphical model
called Topical Impact over Time (TIoT), which identifies trending topics and highlights significant
papers within a bibliographical database. By this, TIoT captures the changing influence of latent
topics over time by analyzing the temporal dynamics present in a corpus of documents.

8.3 Cross-Domain Evolution

Cross-domain evolution is studied by analyzing semantic relationships between scientific evolving
topics (domains) and observing their evolution over time. This analysis primarily focuses on the
analysis of topic representations (e.g., semantic similarity) and the topic citations (e.g. citation
context) of evolving topics. Topic evolution networks (Chapter 7) are a natural tool for this kind
of analysis that includes identifying evolution patterns such as topic merging, topic splitting, etc.
[226–228].

Research on cross-domain topic evolution is less prevalent compared to studies focused on the
evolution within a single domain, such as topic trend analysis. Most existing studies in this area
examine the development of scientific fields by analyzing scholarly literature, and tracing how
topics evolve within these domains over time. We categorize these studies based on the type of
information used in their methodology into the following classes.

8.3.1 Citation-based Analysis

Citation-based analysis leverages document archives that contain additional information, such as
citation links or retweets/likes, to construct document citation networks. These networks can
be used to investigate semantic relationships between topics, such as topic influence [10] and
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information flow [209, 229]. By analyzing these networks, it is possible to study more complex
trends in the interaction between different topics like novelty [230, 231] and paradigm shift [232,
233].

For instance, [234] seeks to discover the pairwise probabilistic dependency in topics of
documents that associate authors from a latent social network. In [235], authors apply node-
embedding algorithms to citation networks for community detection and citation prediction.
These low-dimensional vectors are mainly used for community detection within citation networks.
These approaches lack content and can only describe information in the scale of authors or
documents.

[13, 236] proposes the Flow Vergence (FV) gradient to detect paradigm shifts in the scientific
literature. Similarly in [209], authors proposed a method to identify dynamic knowledge flow
patterns of business method patents with a hidden Markov model. Moreover, the authors of
[210] combine citation and co-citation analysis, and social network analysis altogether in order to
review trends in the field of business research.

8.3.2 Semantic-based Analysis

These methods are based on the temporal analysis of topic representations (Part I) changing
across different time periods.

For instance, [196] introduces a method for reconstructing the dynamics of scientific fields
using phylomemetic networks. Topics are defined as directed cliques of co-occurring terms and
aligned across different time periods using Jaccard similarity [237]. These networks can then be
used to visually trace the evolution of topics and the structural transformations within different
scientific domains over time and the approach is illustrated by two extensive case studies on
"embryology research" and "networks in biology" corpora.

[238] proposes a framework for identifying emerging topics based on dynamic co-word network
analysis. Time-sliced co-word networks are weighted according to co-occurrence term frequency,
and a back-propagation neural network is used to predict a future co-occurrence term network.
Moreover, DAC [201] is a descendant-aware topic clustering algorithm that generates overlapping
clusters as candidates for future emerging topics. In [200], the authors train binary classification
models to capture the materialization of emerging topics.

The authors of [190] utilize LDA to extract local topics from each time span within a dataset
of information retrieval publications. They investigate the evolution of research topics, analyze
the trends of topics across documents, and explore the dynamic processes involving the splitting
and merging of topics, highlighting the transfer of knowledge between these evolving topics.
Technically, They then aggregate the per-document topic distributions annually to assess the
popularity and detect trends in these topics over time. The correlation between local topics
and between a local topic and a global topic is measured by cosine similarity [239]. With this
methodology, the splitting and merging of local topics indicates the existence of knowledge transfer
within a global topic or between global topics.

Similarly, the authors of [199] present a framework based on HDP for uncovering the thematic
substance within a corpus of data and tracing its intricate structural transformations over
time. This approach leverages metrics such as Hellinger distance [240], BHD [241], and Jaccard
similarity [237] and involves the construction of a similarity graph. The authors employ an
automated edge elimination mechanism based on a predefined threshold. This process ensures that
only connections between sufficiently akin topics across consecutive time periods are preserved.
Subsequently, they prune the graph by selecting the appropriate operating point on the cumulative
distribution function (CDF) [242], rather than relying on a fixed similarity threshold. Their
findings indicated that incorporating a moderate overlap (25-50% of the epoch length) between
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successive epochs could substantially improve the interconnectedness of topic nodes within an
evolutionary graph.

8.3.3 Hybrid Analysis

These models combine citation links, semantic links, and other network analyses to study topic
evolution and their dynamics [190]. For instance, the Emerging Clusters Model [243] uses citation
analysis to assess the impact of patents on subsequent technological developments. The basic
idea is to accelerate the detection of emerging topics by analyzing the evolution of citing and
cited patents to identify clusters around hot topics.

In [244], the authors aim to detect the emergence of new research topics using a hybrid
approach based on citation analysis and keywords. [212] explores a research area, Public Relations
Intelligence, using a hybrid approach based on the most frequently cited articles, keyword
occurrence frequency, and co-occurrence network. Moreover, the authors of [211] define innovation
and entrepreneurial ecosystems, and operate a co-citation analysis and network meta-analysis for
explaining the trends and features of multiple meta-knowledge. In [12], the authors aim to study
the timeline knowledge map through author co-citation analysis and direct clustering algorithm.
Furthermore, the authors of [245] integrate citation graphs into the NTMs to forecast the links
between scientific articles. Consequently, their model not only analyzes the content but also
suggests related articles to users.

8.4 Paradigm Shift Analysis

Beyond single-domain and cross-domain analyses, another important line of research examines
paradigm shifts in scientific communities. A paradigm shift is a transformative process where
prevailing theories and methodologies face challenges from anomalies and new discoveries. This
occurs through the collective efforts of scientists engaged in research, experimentation, and
analysis, ultimately overwhelming protective hypotheses and leading to a radical departure from
established norms, thus paving the way for new perspectives. This concept can be approached
from multiple angles. Cross-domain evolution analysis explores how a topic from one community
contributes to another scientific field, potentially catalyzing significant changes and fostering new
topics within a hybrid community composed of the original fields. Conversely, single-domain
analysis can track paradigm shifts by examining how a community evolves over time, generating
new concepts within its boundaries. In the following section, we will provide a comprehensive
definition of paradigm shifts and delve deeper into their implications for scientific progress.

A paradigm shift represents a fundamental change in the underlying assumptions and method-
ologies of a particular scientific field, driving the evolution of topics and fostering the emergence
of new research areas within scientific archives [1]. As shown in Figure 8.1, the general pattern
behind paradigm shift is described by the Kuhn Cycle [246] which represents the cyclical nature
of scientific progress. According to this model, a paradigm shift occurs within the following
phases:

• Pre-Science: This phase consists of several incompatible and incomplete theories without
any consensus on specific research goals shared by a community.

• Normal Science: This phase is characterized by a consensus within a community and a
dominant paradigm.

• Model Drift: During the normal science phase, several anomalies might appear that
challenge the existing paradigm within facts that are difficult to explain and initiate a
model drift phase.
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• Model Crisis: In this phase, the community starts debates and enters a crisis mode as
the consequence of the paradigm’s inability to account for the anomalies.

• Model Revolution: In this phase, the scientific revolution takes place, underlying assump-
tions of the field are re-examined and a new paradigm gets established.

• Paradigm change (Post-revolution): This phase establishes a new paradigm’s domi-
nance and delivers a normal science to scientists for solving puzzles within the new paradigm.

Recent studies in fields such as innovation policy [248] and revenue management in hospitality
and tourism [249] have employed this framework to assess the state of their respective disciplines.
While some domains, like innovation policy, appear to be approaching a "crisis stage" that may
precede a paradigm shift due to ongoing societal and technological transformations, others, such
as revenue management in hospitality and tourism, have not yet progressed beyond the "normal
science" phase. These diverse examples illustrate that the applicability and manifestation of
paradigm shifts vary across disciplines, reflecting the unique challenges and developments within
each field. Researchers are increasingly using scientometric analyses, evolutionary frameworks,
and co-citation studies to track these potential shifts and understand the changing landscape of
knowledge in their respective domains.

8.4.1 Characteristic

To gain a clearer understanding of paradigm shifts, it is necessary to identify and analyze their
key characteristics. As described in [247], the main characteristics of paradigm shift include
1) Collectiveness, 2) Sequentially Cumulative, 3) Causal Interdependence, and 4) Contextual
Metamorphosis. These characteristics are explained in detail as follows.

• Collectiveness: This characteristic emphasizes the collaborative and cumulative nature of
the shift within a topic or group of research publications. In other words, a paradigm shift
is driven by a collective group of documents within specific problems, rather than being
limited to individual research or isolated instances.

• Sequentially Cumulative: Scientific knowledge is cumulative, meaning that discoveries
and insights build on previous ones. This cumulative process of knowledge generation is
imposed by time in a chronological order that allows for the continuous expansion and
refinement of scientific understanding.

• Causal Interdependence: The progression of scientific knowledge generation is not only
sequential but also interconnected in such a way that each phase influences or causes the
next.

Figure 8.1: Kuhn Cycle [247]
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• Contextual Metamorphosis: As scientific exploration deepens and anomalies emerge,
a dominant paradigm undergoes a complete and fundamental transformation, eventually
producing a new paradigm that is radically different from the initial paradigm.

By examining these characteristics in detail, we can develop a more comprehensive framework
for recognizing and interpreting paradigm shifts across different fields of study. In Chapter 10, we
suggest a new definition for paradigm shift and propose a framework that extracts topic evolution
from the perspective of paradigm shifts.

8.5 Conclusion

In this chapter, we have focused deeply on the complex landscape of scientific evolution, cate-
gorizing and investigating the multifaceted processes that drive the advancement of knowledge.
By examining patterns of scientific progress and the interplay between different fields of study,
we have highlighted the dynamic nature of science, driven by innovations and cross-disciplinary
fertilization. Our investigation was structured around two primary approaches to analyzing science
evolution: Single-Domain Evolution Analysis and Cross-Domain Evolution Analysis. Through
the lens of Single-Domain Evolution, we examined the progression within specific scientific fields
using dynamic topic models, LDA-based methods, and graph-based techniques. These approaches
provided insights into the temporal dynamics of topic trends and the underlying structures of
scientific knowledge within individual domains. On the other hand, Cross-Domain Evolution
Analysis focuses on the interactions between different scientific fields, utilizing citation networks,
semantic links, and hybrid approaches to uncover the relationships and influence between topics.
This cross-disciplinary perspective revealed the complex web of connections that drive scientific
innovation and highlighted the importance of interdisciplinary research in fostering new insights
and discoveries. Throughout this chapter, we have seen how advanced algorithms and dynamic
models enable us to track the evolution of scientific topics, identify emerging trends, and un-
derstand the mechanisms underlying the development and dissemination of knowledge. The
integration of temporal elements into these models has proven crucial in capturing the evolving
nature of science, providing a nuanced view of how topics emerge, converge, and diverge over
time. In the next two chapters, we introduce models, developed from our current findings, that
facilitate the discovery of emerging topics and the investigation of paradigm shifts.
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Chapter

9
Automatic Topic Emergence
Monitoring

The evolution of science is an ever-unfolding narrative, characterized by the relentless pursuit of
new knowledge and the refinement of existing theories. This dynamic process is driven by the
collaborative efforts of scientists who engage in rigorous research, experimentation, and analysis.
Their endeavors are influenced by a myriad of factors, including groundbreaking discoveries,
technological innovations, and the steady accumulation of empirical evidence. Gaining a deep
understanding of the evolution of science not only enriches the current research landscape but also
informs strategic resource allocation. This understanding has profound implications for research
funding and public policy decisions, impacting both academic and industrial spheres.

This chapter presents ATEM [250, 251], which aims to advance our understanding of scientific
evolution and to provide valuable insights into the identification of emerging topics. The chapter
includes the introduction of the ATEM science evolution model, a discussion on the use of ATEM
for various science evolution analysis tasks, an exploration of the application of ATEM to emergent
topic detection, and the presentation of the implementation and proof of concept.

This work has been presented at BDA’2023 and published in Rahimi, H., Naacke, H.,
Constantin, C., Amann, B. (2024). ATEM: A Topic Evolution Model for the Detection of
Emerging Topics in Scientific Archives. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M.
(eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in
Computational Intelligence, vol 1143. Springer.
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9.1 Introduction

One of the most insightful ways to analyze the evolution of science is through the detection of
emerging topics. This process involves identifying nascent areas of research and study within
scientific disciplines. Emerging topics represent ideas or issues that are gaining traction or
becoming increasingly prominent within a specific field or broader area of interest. The ability
to detect these emerging topics has significant societal implications. It enables the tracking of
scientific progress and helps shape future research agendas and technological advancements.

Various methodologies have been developed to detect emerging scientific themes, each with
its own strengths and limitations. Single-domain approaches are adept at identifying trends
based on the usage of specific terms or phrases. However, they often fall short of capturing
the broader context and the intricate relationships between scientific concepts. In contrast,
cross-domain approaches excel at uncovering the relationships between different scientific articles.
Yet, these methods may struggle to pinpoint trends in the usage of specific terms or phrases.
In this chapter, we introduce a novel framework called ATEM (Automatic Topic Emergence
Monitoring) designed to uncover emerging topics through a multifaceted analysis of the evolution
of science. This framework extracts evolving topics from a corpus of documents using a dynamic
topic model. It then creates a dynamic topic-citation graph by projecting document citation links
into the topic space. Finally, it applies a dynamic graph embedding method on the topic-citation
graph for representing the dynamic citation context of topics. Based on this context, emerging
topics can be defined as couples or sets of evolving topics with similar citation contexts. The
motivation behind ATEM lies in the recognition that cross-domain citation links not only reveal
semantic relationships between disparate topics but also signal the potential emergence of new
interdisciplinary areas. By employing dynamic graph embedding, ATEM is capable of detecting
emerging topics and predicting future interdisciplinary trends. The overall architecture of ATEM
is depicted in Figure 9.1, and a detailed explanation of its implementation will be provided in
Section 9.5.

Figure 9.1: Architecture of ATEM

9.2 ATEM Evolution Model

ATEM is a general-purpose framework for modeling and analyzing the evolution of topics extracted
from scientific archives. ATEM extracts evolving topics using dynamic topic models and builds
evolving topic-citation graphs that connect topics through temporal citation links.

9.2.1 Evolving Topics

Evolving topics (Definition 5.1.1, page page 43) are dynamic subjects that trace the development
of a single domain over time, characterized by a temporal structure[127]. This definition is
applicable to any topic derived from a document archive using a topic model. The representation
of a topic can be precomputed by the topic model or determined post hoc through a labeling
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function, such as cTF-IDF[54], applied to the relevant documents. It’s important to note that
there may be periods without any sub-topics, in which case the document set is considered empty
and the topic representation is undefined. For instance, Table 9.1 illustrates an evolving topic
with the ID T680C6 (as depicted in Figure 9.2), showing the temporal progression of its sub-topics
annually from 2004 to 2018.

Table 9.1: Distributed word representation for evolving topic T680C6.

Year Label
2004 [’knn’, ’linear classifier’, ’nearest neighbors’, ’nearest neighbor’, ’distributional’, ’neighbor classifier’]
2005 [’knn’, ’nearest neighbors’, ’euclidian’, ’pearson’, ’instance based’, ’neighbor nn’]
2006 [’knn’, ’instance based’, ’neighbor classifier’, ’nearest neighbors’, ’neighbor nn’, ’neighbor knn’]
2007 [’knn’, ’relief’, ’nn classifier’, ’neighbor nn’, ’membership values’, ’nearest neighbors’]
2008 [’knn’, ’neighbor nn’, ’nearest neighbour’, ’nn algorithm’, ’nearest neighbors’, ’instance based’]
2009 [’knn’, ’neighbor knn’, ’nn classifier’, ’nearest neighbors’, ’neighbor nn’, ’text classification’]
2010 [’nearest neighbors’, ’neighbor classification’, ’knn’, ’metric learning’, ’knn classifier’, ’neighbor classifier’]
2011 [’instance selection’, ’knn’, ’neighbor classifier’, ’neighbor classification’, ’nearest neighbors’, ’instance based’]
2012 [’knn’, ’nearest neighbors’, ’neighbor knn’, ’test sample’, ’instance based’, ’nn classifier’]
2013 [’knn’, ’nearest neighbors’, ’based nearest’, ’knn classifier’, ’decision boundary’, ’neighbor classifier’]
2014 [’knn’, ’metric learning’, ’nearest neighbors’, ’nn classifier’, ’knn classifier’, ’neighbor nn’]
2015 [’nn classifier’, ’knn classifier’, ’knn’, ’instance based’, ’pmc’, ’class label’]
2016 [’knn’, ’instance selection’, ’knn algorithm’, ’knn classification’, ’dpc’, ’nn classification’]
2017 [’knn classifier’, ’local mean’, ’harmonic mean’, ’nearest neighbors’, ’knn’, ’based nearest’]
2018 [’cent’, ’knn classifier’, ’knn’, ’neighbor method’, ’instance selection’, ’nearest neighbors’]

9.2.2 Evolving Topic-Citation Graph

ATEM aims to discover citation relationships among the evolving topics as an indicator of
cross-domain evolution by projecting the structure of citation networks into evolving topics.

Definition 9.2.1 (Evolving Topic Citations). Let T be a set of evolving topics defined over
a document set A and EDpAq Ď A ˆ A by a set of citation links defined on A. Then, the
topic clusters Dptiq all topics ti P T and the document citation edges ED define a set of edges
ptx, ty, jq P ET from an evolving topic tx to evolving topic ty if there exists at least one citation
from some document in Dptjxq to a document in Dptkyq where 0 ď k ď j :

ET “ tptx, ty, jq | d P Dptjxq, d1 P Dptkyq, 0 ď k ď j : EDpd, d1qu (9.1)

We can add to each edge ptx, ty, iq in ET a weight w which corresponds, for example, to the
number of citations that exist between the documents in Dptjxq and Dptkyq, 0 ď k ď i.

9.3 ATEM Evolution Analysis

The proposed evolution model can be used to analyze the evolution of topics within the two
classes defined in the previous chapter. The first class is single-domain evolution analysis which
observes the change within the representation of words and contents, the size of topic clusters,
and the number of incoming and outgoing citation links. The second class is called cross-domain
evolution analysis and explores the evolution of topic relationships defined by the topic citation
network.

Single-Domain Analysis Using ATEM, one can analyze the change within the word repre-
sentation of a single topic. As shown in Table 9.1, observing this change allows us to explore
the semantic transformation in our understanding of a single topic by examining the words and
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Figure 9.2: Evolution of citations of evolving topic T680C6.

Figure 9.3: Evolution of citations of evolving topic T485C6

phrases that are commonly associated with that topic. Besides, one can identify changes in the
way people conceptualize a single topic for discussion and research. This kind of information is
useful for researchers and companies seeking to stay up-to-date on the way people think about
and discuss a particular topic. In addition, ATEM allows us to explore the publication and
citation trends of individual topics by observing the document cluster size and the incoming and
outgoing citations over time.

Example 1. Figures 9.2 and 9.3 show the evolution of citations to topics T680C6 and T485C6
(with at least 5 citations).

Cross-Domain Analysis Using ATEM, one can observe the evolution of cross-domain relation-
ships between topics. ATEM investigates factors that contribute to the growth or decline of topics
by observing the evolution of citation links between topics. Any variation in the existence and
number of citation links between topics is a signal of change for the discovery of new knowledge
and in particular the emergence of new research topics (see Section 9.4).

Citation links between documents can also be used as a way to trace the development and
evolution of ideas over time. By following the citation links between documents, it is possible to
see how different ideas or research findings have been built upon or challenged by subsequent
work. This can provide insight into the relationships between different topics and how they have
evolved over time. Therefore, we define a concept called Citation Context for topics. ATEM
identifies emerging disciplines by investigating and comparing the Citation Context of different
topics. More exactly, we consider that if two different topics are cited by the same other topics at
a given time period, this may indicate the emergence of a new topic defined by the document
contents of the cited topics.

Example 2. Figure 9.4 shows the evolution of co-citations to evolving topic T680C6 and T485C6.
We can see that both topics have been cited by topic T70C6 (Figure 9.5) in 2009 and from 2012
to 2020. The number of co-citing topics increases in 2012 which might be considered as a first
indication that both concepts are the origin of a new emerging research topic about nearest
neighbor classifiers and apnea analysis.
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Figure 9.4: Co-citations of T680C6 and T485C6

Figure 9.5: Citing evolving topic T70C6

9.4 Emerging Topic Detection

One of the main goals of ATEM is to identify emerging research topics based on the topic citation
graph. We hypothesize that citations in documents indicate a relationship between the topics
discussed in those documents. When a document cites another document, it typically means that
the authors of the first document refer to information, ideas, or research from the second document
as support or evidence for their work and that the topics discussed in the citing document are
influenced or informed by the topics discussed in the second document.

Citation context refers to the ways in which documents in a given topic cite and are cited by
documents in other topics. By analyzing and comparing the citation context of multiple topics, it
may then be possible to gain a better understanding of the relationships between different ideas
and their evolution over time. In other words, if two or more topics share a high citation context
similarity at a given time period, it is reasonable to expect that they might merge into a new topic
in the future, providing a basis for the development of new and interdisciplinary ideas. Thus,
the citation context similarity between two topics can be seen as a measure of the likelihood of
discovering new interdisciplinary topics in the future by merging these topics.

We assume that two evolving topics ti and tj with a highly similar citation context at a given
time period produce an emerging evolving topic ti,j Based on this assumption, we need to define a
similarity measure that allows us to compare the context of two nodes defined by the topic citation
graph ET . A graph embedding [252, 253] of a graph G is a mapping function emb : G ÞÑ 2ℜ

d ,
which aims to represent nodes, edges, subgraphs, or even the entire graph by low-dimensional
feature vectors v P ℜd that preserve the topological and other contextual information about the
encoded entity. The embedding dimension d is expected to be much smaller than the size of the
graph d ! n, where n is the number of nodes in G, which allows nodes to be efficiently compared
by the encoded properties. Using this technique, our idea is then to represent the context of a
topic by its embedding in the citation graph and to generate for each evolving topic a sequence of
graph embeddings which reflects the evolution of its context in the topic citation graph.
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There are several dynamic representation learning methods capable of embedding nodes
in a low-dimensional vector space which captures the evolution of the network structure. In
our implementation, we use dynamic node embeddings [254], which project each node v in
a sequence of graphs into a sequence embpvq of low-dimensional vectors. By projecting the
topic citation links ET defined in Section 9.2 on each time period pi P P a set of topic edges
Ei

T “ tptx, tyq | ptx, ty, iq P ET u, we can produce a sequence of graphs GpP q “ rpT i, Ei
T q | pi P P s

ordered by periods pi that reflects the distribution of citations between documents of all topics for
all time periods. We hypothesize that the dynamic topic embedding vector embptq of a topic t in
a dynamic topic citation graph represents the evolution of the citation context of t, and that two
topics with similar embedding (citation context) at period pi are likely to generate new emerging
topics. More formally, we can now provide a more precise definition of emerging topics:

Definition 9.4.1 (Emerging Topics). Two evolving topics ti and tj define an evolving topic
ti,j emerging at time period pk, if the context distance distptki , t

k
j q at period pk is above a given

threshold ϕ and below this threshold before pk.

In our implementation, we use cosine-similarity on the topic embeddings to compute the
distance between two topic contexts. Using this definition, we can now detect emerging topics in
two ways:

1. K-nearest neighbors of a given topic t: we generate for each evolving topic t and period pi

a set of nearest neighbors with minimal embedding distance higher than a given threshold.

2. Cluster the embeddings of each period: we apply a clustering algorithm on the topic
embeddings of each period. Each cluster represents an emerging topic defined by a set of
similar topics.

Note that the definition of an emerging topic does not include the definition of its topic cluster
and representation. This is consistent with the observation that the "future" documents of a
topic emerging at a given time are not defined. However, as we show in our experiments, we can
define functions to estimate the past and future documents using the topic model or a search
engine like Google Scholar.

Example 3. Figure 9.6 shows the evolution of topics emerging for topic T680C6 in 2013. We
can see, for example, topic T661C6 appears in 2013 as a near embedding neighbor of evolving
topic T680C6 (with a maximal distance of 0.2).

Figure 9.6: Embedding distance evolution for topic T680C6 at period 2013

Table 9.2 shows the documents that are common to T680C6 and T661C6. These documents are
obtained by taking the intersection of the results of two queries RpT680C6q “[’nearest neighbors’,
’knn’, ’nearest neighbor’] and RpT661C6q “[’glycemic’, ’hypoglycemia’, ’hyperglycemia’] ranked
by the average search score. The result shows that most of the top relevant documents for
emerging topic (T680C6, T661C6) have been published after its emergence period 2013.
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Figure 9.7: Evolving topic T661C6

Table 9.2: Common documents for topic (T680C6,T661C6) emerging in 2013

Year Title
2020 Performance evaluation of classification methods with PCA and PSO for diabetes.
2020 An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy
2020 Using Machine Learning to Predict the Future Development of Disease
2019 Performance Analysis of Machine Learning Techniques to Predict Diabetes Mellitus.
2018 Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.
2017 Automatic Diagnosis Metabolic Syndrome via a k- Nearest Neighbour Classifier.
2016 Predicting risk of suicide using resting state heart rate.
2015 Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method
2013 Automated detection of diabetes using higher order spectral features extracted from heart rate signals

9.5 Implementation

ATEM is implemented in Python and has been applied to the DBLP[255] dataset of 5M scientific
articles published between 2000 and 2020. DBLP is a large open bibliographic database, search
engine, and knowledge graph that archives computer science publications. The architecture of
ATEM is shown in Figure 9.1. We can distinguish three main steps that will be explained in the
following subsections.

9.5.1 Extracting Evolving Topics

The evolving topic extraction workflow consists of four steps, as shown in Figure 9.8. The first two
steps generate two types of document clusters (content-based and citation-based). The first type
of cluster corresponds to the traditional notion of topic clusters and regroups semantically similar
documents. The second type of cluster applies a community detection algorithm to the document
citation graph. We assume that the citation graph reflects different research communities, and
by using this process, each generated cluster separates documents published and referenced by

Figure 9.8: The Implementation of Extracting Evolving Topics.
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different research communities. The third step (cluster aggregation) consists of combining both
types of clusters into new clusters corresponding to topic clusters that regroup semantically
similar documents published and cited within a scientific community. The last step (evolving
topic representation) consists of decomposing each cluster into a temporal sequence of sub-clusters
(evolving topics) and computing a representation for each sub-cluster.

Content-based Document Clustering For clustering documents based on their contents, we
computed jointly word and document embeddings on the document content with Doc2Vec [46],
then reduced the document dimensions with UMAP [256], and finally clustered them with
HBDSCAN [48]. This process is similar to existing cluster-based topic modeling techniques such
as Top2Vec [24] and BERTopic [16].

Citation-based Document Clustering For clustering documents based on the citation
network, we perform the Leiden community detection method [257] on the citation graph. Each
document community then reflects the publication activity within a community of authors that
are distinguishable from other author communities in the network.

Cluster Aggregation After the two clustering steps, we have two types of document clusters
T and C, which are independently informative and valuable. The cluster aggregation step simply
consists of taking the intersection of all clusters in T with all clusters in C to obtain a set of
non-empty clusters T where for each cluster tci,j P T is the intersection of some cluster ti P T
and some cluster cj P C.

Dynamic Topic Representation In the next step, the topic document clusters D P T are
divided into n “ |P | time frames denoted by D “ pD1, . . . , Dnq where each Di is a cluster of
documents in period pi. In this regard, we adopt the dynamic document integration of clusters
upon using static time windows. We only keep clusters with a minimal number of 3 documents.
Each of these topic clusters is represented in two manners:

• Nearest Words: we compute for each document cluster a centroid vector by averaging over
the embeddings of its vectors. The cluster representation is defined by the top-n words
corresponding to the n nearest embedding neighbors of the centroid vector.

• Class-based TF-IDF: similar to [54], we regroup the documents of each topic cluster Dptiq
in all time periods pi and apply TF-IDF to each group to find the top-n word representation
for each group.

9.5.2 Creating Topic-Citation Graphs

To generate the evolving topic-citation graph as defined in Section 9.2, we create a node for each
evolving topic and a weighted directed edge according to Equation (9.1). Each citation edge in a
given time period is weighted by the number of outgoing citations. This dynamic representation
guarantees that the embedding of a topic in a given period depends only on the citations of the
current and previous periods.

9.5.3 Extracting Emerging Topics

To compute the temporal node embeddings on the topic citation graph, we used OnlineN-
ode2Vec[258], which is based on StreamWalk and online second-order similarity. The result is
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a temporal embedding for each topic, which can be used to compare evolving topics by their
citation context. In particular, it allows us to identify evolving topics ptx, tyq when the distance
between two evolving topics tx and ty is less than a given threshold. In our implementation, we
use an approximate nearest neighbor algorithm to generate and rank, for each topic tx and each
period, the set of all nearest neighbors ty that were not nearest neighbors in a previous period. A
collection of generated emerging topics is available at here.

9.6 Proof of concept

The objective of this section is to demonstrate the effectiveness of the proposed framework in
identifying emerging topics as compared to co-citation analysis. To achieve this, we categorize
the emerging topics into two groups: one based on the embedding representations of the topic-
citation graph (referred to as EmbeddingContext), and the other based on co-citation analysis
of topics connected through citations (referred to as CitationContext). These two groups are
then compared to each other. To facilitate this comparison, we generate a set of emerging topics
from both EmbeddingContext and CitationContext. We assess the validity of these emerging
topics by examining the presence of related documents in the past and future of their discovery.
To quantify this, we employ a predictability metric that evaluates the distribution of related
documents over time. By scoring the emerging topics based on this metric, we can effectively
evaluate their predictive power and performance. Therefore, we first generate a random sample
of 200 evolving topics T . For each evolving topic t P T , we generate two sets of n “ 10 topics in
each time period pi:

1. EmbeddingContextptiq contains n topics tx that are new nearest embedding neighbors of
ti at period pi with a given maximum distance threshold of 0.2 and minimum embedding
norm equal to 0.22 to remove noisy embedding vectors (tx was not a neighbor before period
pi).

2. CitationContextptiq contains a random set of n topics tx connected to the evolving topic t
at period pi by a citation path of maximal length equal to 3.

In each of these sets, each pair te “ pt, txq generated by tx P CitationContextptiq and
tx P EmbeddingContextptiq is expected to form an emerging topic at period pi. To explore
this expectation, we consider all pairs te that were appeared for the first time as emerging in
time period pi with representation Rpteq “ rRptjq Y Rptjxq | pj P P s and a document cluster
Dpteq “ rDptjq X Dptjxqq | pj P P s over all periods pj in P .

We then look at each of these new topics and investigate their emergence predictability based
on the year their papers get published. Therefore, we partition Dpteq into two subsets: Dpastpteq

of documents published before the emergence period of te, and Dfuturepteq of documents in DpDq

published after the emergence period of te.

Finally, we quantify the emergence predictability E of each topic pair te by defining the
following function that measures the distribution of its documents before and after its emergence
period:

Epteq :
|Dfuturepteq| ´ |Dpastpteq|

|Dpteq|
(9.2)

meaning (i) when Epteq “ 1, all documents are published at emergence period of pt, teq or
afterwards, (ii) when Epteq “ 0, the same number of documents are published before and after
the emergence period and (iii) when Epteq “ ´1, all documents are published before period p.
While the number of emerging topics (topic pairs) generated by CitationContext increases with
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time, we observed that the average number of topics generated by EmbeddingContext decreases
and the average embedding distance increases.

Figure 9.9 compares the predictability values for emerging topics of EmbeddingContext and
CitationContext. We find that random pairs from EmbeddingContext have higher predictability
compared to CitationContext. Figures 9.10 and 9.11 show the box-plot and violin distribution
of predictability values.

Figure 9.9: The Average Predictability Values

Figure 9.10: Box-plot distribution of predictability values.

Figure 9.11: Violin distribution of predictability values.

By Equation (9.3), we can observe that in average (i) 75% of emerging topics have 1.25{0.75 “

1.66 times more publications after emergence than before and (ii) 50% of EmbeddingContext,
have 2.6{0.4 “ 6.2 more publications after emergence than before, whereas the ratio is 1 for
CitationContext.

|Dfuturepteq|

|Dpastpteq
| “

Epteq ` 1

1 ´ Epteq
(9.3)
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Figure 9.12: The distance distribution of emerging topics.

Figure 9.13: The average of predictability values by year
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9.6.1 Emerging Topic Properties

Figure 9.14 shows the correlation between various parameters that shape the dynamics of emerging
topics. We can see that the average embedding distance (dist) per period increases in time (year).
This can be explained by the fact that as we reach the end of the dataset, we have less contextual
information about the future, and correspondingly the average embedding distance increases.
This signifies that the applied dynamic embedding method estimates that the embedding distance
of emerging topic pairs increases after their emergence. However, this conclusion has to be
confirmed by a deeper analysis of the bias introduced by the dynamic computation algorithm.
Second, the predictability (emergence) decreases with increasing distance and strongly decreases
in time (see also Figure 9.12). This is a natural consequence of the definition of emergence which
compares the number of relevant documents before and after the emergence period. This number
is also influenced by the "relative length" of the past and the future covered by the archive (as
shown in Figure 9.13, the average emergence of topic pairs is positive before 2016 and becomes
negative afterward). Finally, we can see that the average cluster size (all) of emerging topics is
independent of the period, the average predictability, and the average embedding distance.

Figure 9.14: Correlation between Emerging Topic Properties

Figure 9.15 shows the correlations between the average number of new emerging top-
ics (EmbeddingContext) by period (n), the average number of randomly connected pairs
(CitationContext) by period (c), and the average number of connected emerging topics (in-
tersection of EmbeddingContext and CitationContext) by period (cn). We can see that the
average number of embedding neighbors decreases with time, which is consistent with the obser-
vation that the embedding distance increases. The fraction of connected neighbors is independent
of the number of neighbors but increases with the number of connected topics.

9.7 Conclusion

In this chapter, we have introduced the ATEM framework, a novel approach to Automatic Topic
Emergence Monitoring. ATEM leverages dynamic topic models and graph embedding techniques
to uncover emerging topics within scientific archives. By projecting document citation links into
the topic space and creating dynamic topic-citation graphs, ATEM provides a comprehensive
view of the evolution of scientific topics over time. The ATEM framework offers several key
contributions. First, it introduces a robust model for understanding the evolution of science,
which is crucial for strategic resource allocation and informed decision-making in research funding
and public policy. Second, ATEM enables the detection of emerging topics through a multifaceted
analysis of the evolution of science, addressing the limitations of single-domain and cross-domain
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Figure 9.15: Correlation between Embedding and Citation Context

approaches. Third, the framework provides a detailed exploration of the application of ATEM to
emergent topic detection and presents the implementation and proof of concept.

Through the use of dynamic graph embedding, ATEM successfully identifies emerging topics
and predicts future interdisciplinary trends. The experiments conducted demonstrate the effec-
tiveness of ATEM in identifying emerging topics compared to traditional co-citation analysis.
The predictability metric used in the experiments highlights the potential of ATEM to anticipate
new areas of study and potential breakthroughs. In conclusion, ATEM represents a significant
advancement in the field of topic evolution analysis. Its ability to uncover emerging topics and
provide valuable insights into the identification of new research directions makes it a powerful
tool for researchers, policymakers, and stakeholders in the scientific community. The future
development and application of ATEM hold promise for further enhancing our understanding of
the dynamic nature of scientific evolution. In the next chapter, we will expand our horizon by
investigating paradigm shift.
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Chapter

10
Topic Evolution Analysis with
Paradigm Shift

Understanding paradigm shifts is crucial for comprehending the dynamic nature of scientific
progress and innovation. These shifts often result from discoveries or perspectives that cannot be
explained by the existing paradigm. As scientists grapple with these anomalies, they are forced
to rethink established theories and methods, leading to the development of new frameworks that
better account for the observed phenomena. This rethinking process not only clarifies previously
misunderstood or overlooked aspects of a field but also introduces entirely new questions and
areas of research. For example, when the heliocentric model of the solar system replaced the
geocentric model, it didn’t just change how people viewed the universe; it also paved the way
for new branches of science, such as astrophysics and celestial mechanics. This chapter presents
preliminary findings from a practical experiment aimed at extracting topic evolution patterns
based on paradigm shifts. It is important to note that the contributions outlined here are still in
progress and have not yet undergone peer review or official validation.
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10.1 Introduction

As discussed in Section 8.4, a paradigm shift is a dynamic process wherein established theories and
methodologies face challenges from anomalies and breakthrough discoveries. This transformation
occurs through the collective efforts of scientists engaged in both theoretical and experimental
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research, ultimately leading to the collapse of protective hypotheses. The result is a radical
deviation from established norms, paving the way for new perspectives in the field.

Inspired by characteristics discussed in Section 8.4.1, we propose a new definition for paradigm
shift and present a novel framework for paradigm shift-based topic evolution discovery. This
framework builds on the insights and methodologies developed in ATEM and ANTM discussed
in Chapters 6 and 9. The proposed model aims to identify and analyze paradigm shifts, offering
a systematic approach to understanding how topics evolve and new scientific domains emerge.
The ultimate objective is to identify the transition path between evolving topics by extracting
paradigm shifts, as we hypothesize that this approach offers a more accurate depiction of topic
evolution compared to traditional citation-based analyses.

10.2 QuTE Framework

10.2.1 Paradigm shift patterns and scores

To establish a framework for extracting paradigm shift patterns, we begin by mathematically
defining a paradigm shift pattern.

Definition 10.2.1 (paradigm shift pattern). A paradigm Shift pattern ps is a chronologically
ordered sequence of topics ps “ rt0, . . . , tns of length n. In this pattern, each topic tj within the
sequence is strongly influenced by the topic that follows it, differs chronologically from those that
came before it, and gradually transforms over time into a radically different, metamorphic topic
compared to the original one.

As an example, Figure 10.1 illustrates a paradigm shift pattern involving four topics (n “ 4),
transitioning from a topic within the domain of "game theory" to one within "traffic simulation
and analysis." Each topic is influenced by, yet distinct from, its predecessor, with the final topic
being significantly different from the initial one. This transition highlights the evolving focus
from strategic decision-making models to more complex, real-world applications where individual
and collective behaviors are simulated to optimize traffic flow and predict congestion patterns.

set
solution
result

planner
player

domain
problem

equilibrium
planning

game

approach
heuristic
relation
operator

paper
plan

problem
set

planning
fuzzy

algorithm
risk

system
vehicle
optimal
control

portfolio
problem
model
traffic

time
algorithm
simulation

road
data

network
system
vehicle
model
traffic

1998 - 2002 2007 - 2011 2013 - 2017 2016 - 2020

Figure 10.1: A Paradigm Shift Pattern

The mathematical formulation of Definition 10.2.1 is a function that assigns a paradigm-shift
score to a given sequence of topics ps of length n. This function can rank and retrieve paradigm
shift patterns in scientific archives.

Definition 10.2.2 (paradigm shift score). Let ps “ rt0, . . . , tns be a sequence of evolving topic
nodes in some topic citation graph ET (see Equation (9.1) in Definition 9.2.1). Then, the paradigm
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shift score Scoreppsq of ps is defined as follows:

Scoreppsq “

n
ÿ

j“2

log2pIptj , tj´1qq

Sptj , Hptjqq ˆ |Kj ´ Kpj´1q|
(10.1)

where:

• Kj represents the timeframe represented by topic tj ;

• Hptjq is the history of the topic tj in ps, which is equal to the average vector representation
of the topics before tj :

Hptjq “ MeanprVt0 , . . . Vtpj´1qsq (10.2)

• I ptj , tj´1q estimates the influence of topic tj to previous topic tj´1 by the number of
citations from topic tj to tpîc tj´1:

Iptj , tj´1q “ w where w is the number of citations from tj to tj´1 in ET (10.3)

• S pti, tjq is the similarity between topics ti and tj defined by the cosine similarity between
the vector representation Vti and Vtj .

Spti, tjq “ cosinepVti , Vtj q (10.4)

The main hypothesis behind the paradigm shift score in Definition 10.2.2 is that the more
citations exist from recent (high w), but dissimilar (low S), topics ti to previous topics tj (j ă i),
the higher is the likelihood that a substantial wave of anomalies or challenges has been recognized
within the outdated scientific framework. We estimate the paradigm change – or the dissimilarity
concerning its past – of a topic tj by the inverse of the similarity between tj and the average
vectors of all previous topics. A lower semantic similarity suggests a higher likelihood of a potential
paradigm shift. Moreover, we aim to identify scenarios where the semantic disparity is significant
within relatively small time gaps, without ignoring semantic changes within scientific frameworks
separated within longer time periods. This is represented by the expression |Kj ´ Kj´1| which
represents the time gap between two subsequent topics.

10.2.2 Extracting paradigm shift patterns with reinforcement learning

There are several ways to extract paradigm shift patterns. One approach is to use a greedy
algorithm to select a random evolving topic node in the topic-citation graph, and then select
other (future) nodes that maximize the defined scoring function. Automation of this approach
can be achieved by framing it as a Reinforcement Learning (RL) [259] problem. RL enables the
efficient extraction of hidden patterns while training an agent to recognize and identify paradigm
shifts.

RL guides the agent in navigating the topic-citation graph, identifying significant shifts in
scientific knowledge, and uncovering hidden patterns indicative of paradigm shifts. To implement
this RL framework, we define the environment, the agent, the state space, the action space, the
reward function, and the transition dynamics as follows.

10.2.3 Environment

The RL environment simulates the evolving topic-citation graph G, which represents the evolution
of the scientific literature over time. It is defined by a state space S and an action space A.
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State Space

The state space S consists of all possible states pt, kq where t is an evolving topic and k is a
time-frame. The current state is represented by ptc, kcq which is set to initial state pti, kiq at
the start. An episode is denoted as σ which is a list of all previously explored states, initially
containing Epti, kiq. Each state has 3 attributes that characterize the episodes. These attributes
are as follows

• Similarity s which is the cosine similarity between current state Eptc, kcq and the next
state Eptn, knq, initially set to 1,

• Revolution ρ which represents contextual metamorphosis and is the cosine similarity
between initial state Epti, kiq and the next state Eptn, knq, initially set to 1,

• Termination flag d indicating the end of an episode. initially set to False.

Action Space

The action space is characterized by a Step Function that allows the environment to change
its current state ptc, kcq to the next state ptn, knq by executing the action of moving into the
next state ptn, knq. Executing the step function adds the embedding of ptn, knq to σ, as well as
update s, ρ and d. Setting the termination flag d at True prohibits invoking the Step Function
without resetting the environment. However, the Termination flag d is set to True in the following
prohibited scenarios p:

• Non-permissible actions:These actions where kn ě kc are not allowed because our
model’s approach for identifying paradigm shift patterns involves moving from the present
to the past without revisiting the same time-frame or jumping forward to the future again.
These actions are prohibited to maintain the integrity of the model’s chronological analysis,
ensuring a unidirectional exploration of time.

• Non-evident actions: Since the action space A contains all possible combinations of evolv-
ing topics and time-frames, sometimes, the action picked by an agent has no corresponding
edge ptc, tn, knq in the evolving topics-citation graph G, and therefore, are prohibited.

• Terminal actions kn: The episode terminates because the next state is situated in the
oldest time-frame, and there are no older states to consider further in the analysis.

Notation Description

S Observation space pt, kq of evolving topic t at time-frame k
A Action space pt, kq to go to evolving topic t at time-frame k
G Evolving Topics Citation Graph
E Set of Evolving Topics embeddings
L Number of time-frames
σ List of embeddings of previously visited states
r Score value of going from current to next state
d Episode termination flag
s Cosine similarity between ptc, kcq and ptn, knq

ρ Cosine similarity between pti, kiq and ptn, knq

Table 10.1: Notation used for modeling the environment of the RL Problem
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• Revolution actions ρ: When the cosine similarity between the next state and the initial
state is below a threshold ρh, it signifies the emergence of a normal science that is significantly
different from the initial state. In this scenario, there’s no need to proceed further, as a
substantial shift in the scientific paradigm has already been identified.

Reward Function

The step function returns the new current state, a score r calculated via a reward function, and
the new value of the termination flag d. Resetting the environment consists of picking a new
random initial state, emptying σ, and resetting the values of s, ρ, and d. The reward function,
which associates a score for each step taken in the environment by an agent, is defined as follows :

Rptc, kc, tn, knq “

#

´8 if action is prohibited
log2pIptn, tcqq

Sptn, Hptnqqˆ|kn´kc| else

This reward signal tells us how good is the action taken by an agent in terms of finding a potential
paradigm shift pattern.

Transition Dynamics

The transition dynamics describes how the environment changes states in response to agent
actions. This is governed by the step function, which updates the current state, the episode
history, the similarity, revolution, and termination flag based on the chosen action and the
environment’s constraints. The process starts by initializing the dynamic graph G, set E, and
integer L to set up variables and select an initial state pti, kiq. It then sets the current state
to pti, kiq, initializes σ with Epti, kiq, and sets ρ, s, and d to their initial values. During each
step, the algorithm processes the action ptn, knq; if kn “ 1, it sets the termination flag d to True.
Otherwise, it calculates a reward r, updates ρ, and adjusts σ. If ρ drops below a threshold, d is
set to True. The function returns the updated state, reward, and termination flag d. The ‘reset‘
function clears σ and restores ρ, s, and d to their initial states.

To describe the Transition Dynamics more concisely, we have provided the following pseudo-
code describing its general functioning :

10.2.4 Agent

In reinforcement learning, an agent interacts with an environment to learn a strategy that
maximizes a reward. The agent makes decisions based on observed states, receives feedback in
the form of rewards, and updates its strategy over time to optimize its actions. This iterative
process involves exploring different actions and gradually improving the agent’s decision-making
capabilities by learning from the consequences of its actions. In the context of PS pattern
extraction, the agent navigates the citation graph and makes decisions about which nodes to
explore next in order to uncover patterns indicative of paradigm shifts. To achieve this goal, we
employ Q-learning, allowing the agent to store expected future rewards for state-action pairs in a
table. This table is updated iteratively based on the rewards obtained from the environment. To
optimize results, it balances exploration and exploitation through a decreasing exploration rate ϵ.
We use the following notation to describe the agent’s behavior.

The outcome of the learning process is captured in a Q-Table, where the states and actions
correspond to evolving topics across different time frames. The value of a given state-action
pair in this table, once normalized, represents the probability that a paradigm shift path exists,
connecting these two evolving topics within their respective time frames. Before engaging in any
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Algorithm 1: Transition Dynamics
INPUT(Dynamic Graph : G, Set : E, Integer : L)
INITIALIZE A and S using G and L
Randomly choose initial state pti, kiq from S
ptc, kcq Ð pti, kiq
σ Ð rEpti, kiqs

ρ Ð 1, s Ð 1, d Ð False
Function step (action : ptn, knq) :

if kn “ 1 then
d Ð True

else
r Ð fptc, kc, tn, knq

s Ð SCpEptc, kcq, Eptn, knqq

ρ Ð SCpEpti, kiq, Eptn, knqq

ptc, kcq Ð ptn, knq

σ Ð σ Y rEptc, kcqs

if ρ ď ρh then
d Ð True

return ptc, kcq, r, d

Function reset() :
σ Ð empty, ρ Ð 1, s Ð 1, d Ð False

training, the agent will carry out a process that will allow it to penalize non-permissible and
non-existent state transitions by updating the Q-table. This process is called Whispering, in which
the agent sets Q-Values to ´8 for any state-action pairs where the action is non-permissible
given or there is no existing edge in the graph between the representation of current and next
states.

Following that, the agent is capable of selecting an action from the action space A employing
a Dynamic-ϵ-Greedy policy and referencing the Q-Table. Subsequently, it executes the selected
action within the environment, acquiring the current environment state, the next state (chosen
action), and the reward, a tuple referred to as an experience. The agent subsequently proceeds to
update its Q-Table by leveraging its learn function based on this obtained experience. To sum up
the structure of the agent, we present the following pseudo-code :

After setting up the environment and the Q-learning agent, the agent enters a training loop
consisting of a predetermined number of episodes. During each episode, the agent engages with
the environment until the episode concludes via its termination flag d. In each time step of the
episode, the agent chooses an action utilizing its Q-Table and an ϵ ´ greedy policy. The action is
then executed in the environment, leading to the subsequent state and a reward, both of which
are employed to update the agent’s Q-Table via the learn function. After finishing the training
loop, we obtain Q˚, the Q-Table we would use to extract paradigm shift patterns. Here’s the
pseudo-code explaining the interaction between the agent and its environment :

Table 10.2: Notation used for training the agent

Notation Description
Q Q-Table of dimensions cardpSq ˆ cardpAq

γ The discount factor
ϵ The exploration rate
ϵdecay Exploration rate decay factor
ϵmin Minimum exploration rate value
∆ Dictionary assigning to each state pt, nq its index in the Q-Table
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Algorithm 2: Q-Learning Agent
Function INPUT(Graph : G, Set : S, Set : A) :

Initialize Q with zeroes
Execute whispering process

Function select_action(State : ptc, kcq) :
x Ð random number between 0 and 1
if x ď ϵ then

Randomly Choose action leading to next state ptn, knq

else
Select action ptn, knq that gives highest value in current state ptc, kcq

return ptn, knq

Function learn(experience) :
sc, sn, r Ð experience
Qr∆pscq,∆psnqs Ð r ` γ ¨ maxpQr∆pscq, :sq
if ϵ ą ϵmin then

ϵ Ð ϵ ¨ ϵdecay

Algorithm 3: Training the agent on the environment
Initialize environment env
Initialize Q-Learning agent agt
for _ in range nbepisodes do

finished = False
env.resetpq

while not finished do
cs Ð env.current_state
action Ð agt.choose_actionpcsq

r, d Ð env.steppactionq

experience Ð ∆pcsq,∆pactionq, r
agent.learnpexperienceq

finished Ð d

10.3 Experimental Setup

10.3.1 Dataset

We use a DBLP dataset of 500,000 documents dating from 1998 to 2020 for the experiment. Each
document is identified by a unique ID and has its list of references, which is also a list of the
IDs of other documents it cites. This dataset serves as a basis for analyzing paradigm shifts
within the scientific literature, providing a diverse range of documents to explore the evolution of
scientific ideas over time.

10.3.2 Creating Evolving Topic-Citation Graph for RL environment

The DBLP dataset undergoes processing via ATEM [250] to construct the evolving topic-citation
graph relevant to the environment of the RL problem. ATEM necessitates dynamic topic modeling,
for which we’ve employed ANTM [127]. The ANTM configuration entails embedding through
Data2Vec and partitioning documents into seven time-frames of five years each, with a two-year
overlap between consecutive frames. The experiment utilizes specific settings aimed at achieving
superior dimensionality reduction and clustering quality, outlined as follows:

The evolving topics produced by ANTM are then used to create a citation graph of 1185
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Figure 10.2: Evolving Topic-Citation graph statistics

nodes (each node representing an evolving topic throughout the years), and 6322 citation edges
ptx, ty, jq where there exists at least one citation from a document within Dptjxq to a document
withing Dptkyq and 0 ă k ă j ă 7.

To gain insights into the evolving topic-citation graph’s structure, we perform statistical
analysis to assess its topology. While a majority of nodes self-reference, which is typical within a
semantically similar evolving topic, nodes also cite other evolving topics. On average, each node
references around 5 to 15 other nodes.

While nodes tend to have the highest number of citations when they reference themselves
primarily, it might raise concerns about bias in the RL agent’s score function, given that citations
serve as the numerator. However, this potential bias is offset by the denominator because there is
generally greater similarity within a single evolving topic over time, in contrast to two entirely
distinct evolving topics.

10.3.3 Training phase

In this crucial phase, we lay the foundation for our RL environment, leveraging the evolving topic-
citation graph achieved in the preceding stage. This graph serves as the dynamic backdrop against
which the QuTE agent will learn and adapt. Central to this setup is the injection of Revolution
actions, denoted as ρh ď 0.2. These actions symbolize the emergence of a new scientific paradigm,

Table 10.3: The configuration of ANTM for Dynamic Topic Modeling

ANTM config Parameter Value

Splitting
Window size 5

Overlap 2

UMAP dimension reduction

Dimension 5

Number of neighbours 15

Minimum distance 0.3

HDBSCAN clustering Minimum cluster size 10
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significantly diverging from the initial state. By incorporating such disruptive events, we aim
to equip our agent with the capacity to navigate and thrive in evolving knowledge landscapes.
Our training regimen spans an extensive 10 million episodes, denoted as nbepisodes “ 10, 000, 000.
Throughout this training process, we employ an epsilon-greedy exploration strategy, a cornerstone
technique in RL, to balance the agent’s exploration of new strategies with its exploitation of
existing knowledge. Initially, we set epsilon (ϵ) to 1, reflecting maximum exploration. Over time,
we gradually decay epsilon using a decay factor (ϵdecay “ 0.99) until it reaches a minimum value
(ϵmin “ 0.01), thus ensuring a gradual shift towards exploitation while retaining a degree of
exploration to prevent premature convergence to sub-optimal solutions. Furthermore, we define
the discount factor, γ, which plays a crucial role in determining the importance of future rewards.
A value of γ “ 0.95 is chosen to balance immediate rewards with future potential gains. This
choice helps guide the agent towards making decisions that aim to optimize long-term cumulative
rewards by giving some weight to future outcomes without overly discounting them.

10.3.4 Data preparation after training

The Q-table generated after training the QuTE agent has a substantial size of 8295 by 8295.
This large dimension presents challenges for result evaluation using the metrics described in
Section 10.3.5, as it would require prompting a large language model (LLM) 60 million times
to fully test the table. Randomly selecting a subset of states is also not ideal, as it may fail to
represent the overall outcome accurately. To simplify the process, we aggregate states over time
by applying a summation kernel to the Q-table, summing the values from each evolving topic to
others across all time steps. We then normalize these values relative to all topics, reducing the
table size to 1185 by 1185.

Summation Kernel: Let Q P R8295ˆ8295 be the Q-table and K P R7ˆ7 be a kernel
where Kij “ 1 for all i, j. We define R P R1185ˆ1185 such that for i, j P 0, 1, . . . , 1184,
Rij “

ř6
m“0

ř6
n“0Q7i`m,7j`n.

This kernel operation represents the convolution of the Q-table with a 7x7 kernel of ones,
resulting in an 1185x1185 matrix R. This approximation facilitates the comparison of results
obtained from the Q-table to transitions via citation between documents of topics, which is
the prevalent method for modeling evolution between two topics. Subsequently, we eliminate
self-evolution for each topic, signifying the removal of diagonal values, as the focus lies on deriving
evolution from one topic to another distinct topic. Finally, we normalize the values by summation
for each state and divide the values by the average of each row of the simplified Q-table.

Normalization Method: Let R P Rnˆn be the simplified Q-table, where n is the number
of rows and columns in R. We initially define a normalized matrix N as Nij “

Rij´minpRq

maxpRq´minpRq

for all i, j P 0, 1, . . . , n ´ 1. However, we then redefine N as follows: For each row i, we
compute Si “

řn´1
j“0 Rij . If Si ‰ 0, we set Nij “

Rij

Si
for all j P 0, 1, . . . , n ´ 1. If Si “ 0, we

leave Nij unchanged.

This operation performs row-wise normalization on the matrix R, where each element in a row
is divided by the sum of that row, except for rows where the sum is zero. Afterward, we select
the subsequent topic as the argmax for each observed evolving topic, facilitating the exploration
of evolution patterns between evolving topics across multiple periods with a certain probability
distribution. Finally, we employ the TF-IDF method to extract a set of 10 representative words
for each identified pattern, aiding in the characterization of these transitions.
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10.3.5 Validation metrics

The output of training the Q-learning agent can be represented as a matrix of rewards, denoting
the value associated with transitioning between states. To ascertain its veracity, two validation
metrics are used:

Contextualized Topic Rating Metrics

CTCRating[116] evaluates an evolution path from an state si to the next state sn “ argmaxpsiq
where s0 represents the initial state, argmaxps0q denotes the subsequent state, R represents the
word representation, and CTCpRpsi, snqq signifies the rating of evolution from state si to the next
state sn using Instruction-based LLMs such as ChatGPT and request it to provide evaluations
by assigning scores ranging from 0 to 10. For this metric, we utilized "GPT-3.5-turbo," and the
specific prompt used in this evaluation method is as follows:

System Prompt: Evaluate the evolution score of the following sequence of two topics, which
represent a paradigm shift and scientific transformation from one scientific field to another,
and give a score based on a 10-point scale, where 10= ” big fundamental change with some
similarity and relation” and 0= ” no change at all or topics are completely distinguished”, how
well they match each other and how the pattern can be used to retrieve a change from one
topic to another. The two topics are represented with the following keywords in chronological
order: [topic-words (1) -> topic-words (2)]. Consider the clarity, coherence, and relevance of
each topic to the others and the broader context, and respond in the following format: Score:
<score> without explanation.

Jaccard Similarity

The use of Jaccard Similarity ensures that the evaluation considers the alignment between
expected transitions and contextualized assessments (the higher the better). This approach
offers scalability and flexibility across different tasks and environments, enabling a comprehensive
understanding of the agent’s performance and facilitating informed decision-making in evaluating
its efficacy.

10.3.6 Baseline

To establish a baseline for comparison with our proposed approach, we employ a method that
leverages an adjacent topic-citation graph. This method assesses the likelihood of one topic
evolving into another, serving as a benchmark against which we can evaluate the effectiveness of
our RL-based approach. The process involves computing probability weights derived from the
graph’s adjacency matrix. Specifically, we aggregate the number of citations between all evolving
topics across all time frames, resulting in a new table where each row and column corresponds to
an evolving topic. This table, like the simplified Q-table, has dimensions of 1185 by 1185. Since
we aggregated data over time, this process might inadvertently amplify the effect of self-evolution
within evolving topics, potentially skewing the evaluation results. To mitigate this issue, we
first eliminate instances of self-evolution for each topic. Afterward, to normalize our table and
accurately calculate the probability of evolution between any two topics, we divide each element in
a row by the argmax value of that row. This approach ensures that the influence of self-evolution
is removed and the probability distribution across topics is properly scaled. From this matrix, we
discern the most probable evolution pattern through time by selecting the argmax value. This
methodology not only provides insights into the dynamics of topic evolution but also furnishes a
systematic approach to understanding the inter-connectedness and progression of diverse subject
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(a) Jacquard Similarity (b) CTC

Figure 10.3: Distribution of Evolution Scores Achieved by proposed method vs citation-based approaches

matters within the given domain. Finally, we employ the TF-IDF method to extract a set of 10
representative words for each identified pattern.

10.4 Results

Our proposed method outperforms the traditional citation-based approach in identifying scientific
evolution patterns, as evidenced by the comparative data presented in Table 10.4. While the
citation-based approach relies solely on citation links, our method employs a more comprehensive
analysis, resulting in superior performance. For a more nuanced understanding of this performance
difference, we direct readers to Figures 10.3(a) and 10.3(b), which illustrate the distribution of
evolution scores achieved by both methods. These figures provide a visual representation of the
enhanced capability of our proposed approach in capturing complex relationships and evolutionary
trajectories.

Table 10.4: Comparison of PS-based and Citation-based Methods

Method Jacquard Similarity CTC Probability Average

PS-based 0.363 8.559 0.522 0.197
Citation-based 0.388 8.533 0.425 0.172

To illustrate some of these evolutionary transitions, we present the top evolution path that
achieved the highest score according to Definition 10.2.2. As shown in Table 10.5, the pattern
with the highest score is characterized by a significant similarity among the topic words within
the tuple. This table includes the initial and subsequent topic numbers, time-frames, keywords
associated with each topic, and transition scores. The topics are ranked by their transition
scores, with higher scores indicating a stronger predicted evolution between topics. Despite
the substantial overlap among these words, examining the timeline of publications and their
corresponding citations reveals a clear evolution over time. This evolution delineates a paradigm
shift within the field, driving the community to work on graphs toward new topics and marking a
notable transformation in the subject matter over time.
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Table 10.5: Top Identified Topic Transitions

# Topic Time Topics words Score

1 344 6 network, disaster, node, communication, approach, routing, wireless, system, protocol, infrastructure 931145 5 network, node, sensor, energy, data, algorithm, routing, protocol, cluster, sink

2 793 7 packet, classification, algorithm, network, rule, filter, traffic, memory, search, performance 90558 6 node, network, key, attack, scheme, sensor, security, protocol, routing, wireless

3 69 6 access, policy, control, model, system, role, security, rbac, user, constraint 8369 5 access, policy, control, security, system, data, information, model, user, privacy

4 260 4 image, quality, fusion, video, metric, method, visual, proposed, algorithm, measure 82260 3 image, quality, fusion, metric, video, method, visual, proposed, model, measure

5 148 7 graph, processing, algorithm, model, system, partitioning, string, result, distributed, number 82745 6 data, system, iot, application, processing, query, stream, performance, distributed, model

6 319 4 logic, proof, system, program, calculus, rule, set, semantics, sequent, answer 81308 3 logic, set, program, simulation, answer, system, problem, reasoning, model, programming

7 587 6 spectrum, sensing, user, pu, power, secondary, interference, channel, network, primary 81608 5 user, channel, proposed, allocation, algorithm, resource, solution, cell, scheme, interference

8 443 7 writing, learning, citation, research, knowledge, resource, patent, technology, information, data 81443 5 patent, paper, research, innovation, field, technology, economy, data, number, network

9 914 7 array, estimation, doa, algorithm, method, signal, proposed, source, matrix, sparse 8020 6 signal, algorithm, matrix, sparse, measurement, sensing, method, recovery, problem, reconstruction

10.5 Conclusion

In conclusion, this chapter has delved into the critical role of paradigm shifts in the evolution of
scientific topics, offering a comprehensive model for systematically identifying and analyzing these
shifts. By leveraging the Kuhn Cycle, we have outlined a structured framework for understanding
the phases of scientific progress, from pre-science to paradigm change. Our model emphasizes the
characteristics of collectiveness, sequential cumulativeness, causal interdependence, and contextual
metamorphosis, ensuring a holistic approach to the study of scientific evolution. The application
of reinforcement learning (RL) techniques allows for the efficient extraction of hidden patterns
within scientific literature, enabling the identification of significant paradigm shifts. Experimental
results using the DBLP dataset and techniques like ATEM and ANTM demonstrate the model’s
effectiveness in capturing the nuanced dynamics of topic evolution, outperforming traditional
citation-based methods. The validation metrics used confirm the accuracy and reliability of
our findings. Ultimately, the methods and models presented provide valuable insights into the
emergence of new research areas and the continuous evolution of scientific knowledge, underscoring
the importance of understanding paradigm shifts to foster innovation and drive scientific progress
forward.
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Chapter

11
Outlooks and Conclusion

The main objective of this thesis is to develop advanced methodologies for analyzing the evolution
of scientific knowledge. It aims to establish a formal framework for science evolution analysis
by introducing new concepts and incorporating deep learning techniques. The thesis proposes
novel approaches such as ANTM for discovering evolving topics, CTC for evaluating topic
models, ATEM for identifying emerging topics, and QuTE for modeling paradigm shifts. These
contributions seek to provide more accurate and nuanced insights into the complex dynamics of
scientific knowledge evolution, ultimately advancing the field of science evolution analysis.

In this chapter, we summarize the main contributions of the thesis and highlight the key
advancements of our research, and provide a roadmap for the future of scientific discovery and
knowledge organization. This roadmap focuses on identifying emerging topics within scientific
archives, exploring their potential trajectories, and demonstrating how advanced models and
analyses are poised to drive transformative trends, such as Large Language Models (LLMs). We
will discuss promising avenues and anticipate the impacts these innovations may have on the
scientific landscape.

Chapter content
11.1 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.2.1 Topic Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.2.2 Topic Representation Generation . . . . . . . . . . . . . . . . . . . . . . 109

11.1 Main Contribution

The contributions of this thesis are as follows.

CTC In Chapter 4, we introduced the Contextualized Topic Coherence (CTC) metrics, a set
of innovative metrics designed to evaluate the interpretability of topic models. These metrics
leverage LLMs to assess the interpretability of words within a topic, providing a more nuanced and
accurate measure compared to traditional coherence metrics. We categorize these metrics into two
classes. The first class, Automated CTC, takes advantage of encoder-only transformers such as
BERT to predict the probability that topic words would be seen contextually next to each other.
The second class, called Semi-automated CTC, utilizes decoder-only transformers and LLMs to
simulate important human-based evaluations for scoring and rating topic interpretability. We also
benchmarked various recent topic models, including Latent Dirichlet Allocation (LDA) and Neural
Topic Models, against standard datasets like the 20 Newsgroups and Wikipedia, demonstrating
the superior performance of our CTC metric in capturing the true semantic coherence of topics.
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Figure 11.1: The suggested architecture of generating emerging topics

ANTM In Chapter 6, we tackled the challenge of identifying evolving topics in large-scale
datasets by proposing a clustering-based dynamic topic model called Aligned Neural Topic Models
(ANTM). This model integrates temporal information into the topic modeling process, allowing
for the detection and tracking of topic evolution over time. By employing advanced clustering
algorithms, our approach can dynamically adjust to the emergence of new topics and the decline
of old ones, providing a more realistic and accurate depiction of topic dynamics.

ATEM In Chapter 9, we proposed a novel model called Automated Topic Emergence Monitoring
(ATEM). This model detects early emerging topics by combining dynamic graph embedding
techniques with large language models. This model leverages the structural information of citation
networks and the semantic richness of language models to identify nascent research trends at
their inception.

QuTE Lastly, in Chapter 10, we defined the concept of a paradigm shift in scientific domains
and developed a reinforcement learning-based framework, called QuTE that represents topic
evolution with Q-Learning. This framework uses reward mechanisms to identify and promote
shifts in research paradigms, facilitating the recognition of groundbreaking changes in scientific
thought and practice.

11.2 Future Works

For future work, as shown in Figure 11.1, we suggest building upon our models to address two
main challenges in our future work. The first challenge is to extend ATEM by predicting the
evolution of topic citations and improving the detection of emerging topics in the future. The
second challenge is to improve topic representations of existing and emerging research topics,
leveraging advanced large language models for scientific text generation.

11.2.1 Topic Prediction

Predicting the trajectory of scientific progress remains a complex challenge that continues to
engage researchers in computer science and related fields, prompting ongoing investigations into
novel computational approaches and methodologies. This process involves predicting upcoming
scientific topics, assessing the current state of the art, and envisioning potential solutions. We
contend that scientific topics often emerge through the collaborative synergy of knowledgeable
individuals engaging in dynamic brainstorming sessions where innovative ideas are conceived.

In our thesis, we proposed ANTM to extract evolving topics to represent the dynamics of
topics over time [127] and ATEM [250] to detect topic emergence by comparing the evolution of
topics citation contexts within citation graphs. The current approach is efficient for detecting
topics that emerged in the past. Our first direction for future work is to apply advanced deep
learning methods that learn the past and current embedding states in the citation context space
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Figure 11.2: DreamGPT Process [262]

and produce models to predict the next embedding states in the future. One approach is to use
multivariate Kalman filters [260, 261] to estimate the next embedding state and discover estimated
topics that will emerge to create new topics. This methodology can create a comprehensive
framework that not only identifies current scientific trends but also anticipates future directions,
potentially revolutionizing our ability to forecast and navigate the complex landscape of scientific
advancement.

11.2.2 Topic Representation Generation

Topic representation is fundamental for the interpretation of scientific research topics. Current
methods for computing topic representations are mainly weighted term vectors (word clouds)
representing various term-document distributions. This is also true for the representation of
emerging topics (Chapter 9) which are obtained by interlacing the topic representations of topics
with similar citation contexts. We suggest generating topic representation using LLM for emerging
topics that may or may not be identified as such in the scientific literature. For emerging topics
that are not yet identified as such by the research communities – meaning there are not yet enough
publications to produce significant emergence predictability values (discussed in Chapter 9) – we
suggest hallucinating LLMs to generate possible topic representation. LLM hallucination refers to
the tendency of LLM models to produce text that appears correct but is actually incorrect or not
based on the input given. Hallucination is often seen as a negative aspect of LLMs, but we aim
to use it as an advantage for divergent thinking to generate new innovative topics. For example,
DreamGPT [262] explores every combination of words to solve specific problems. In this study,
we will propose a topic-driven hallucination of LLMs that is goal-directed over DreamGPT, which
tries all possibilities.
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