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Captain Rumpelstoss: But... how will I learn to fly, Herr Colonel?
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Résumé

Avec l’expansion importante d’appareils connectés à l’Internet et l’essor du Web 2.0, le contenu web
se diversifie et devient de plus en plus dynamique. Afin de faciliter la diffusion de flux d’informations
évolutives et souvent temporaires (news, messages, annonces), des nombreuses applications web
publient les items d’informations les plus récentes dans des documents RSS ou Atom qui sont en-
suite collectés et transformés par des agrégateurs RSS comme Google Reader ou Yahoo! News. Nos
recherches se placent dans le contexte d’agrégation de documents RSS dynamiques et se focalisent
sur l’optimisation du rafrâıchissement et de l’estimation en ligne du changement de contenu RSS
hautement dynamique. Nous introduisons et formalisons deux mesures qualitatives spécifiques à
l’agrégation de flux RSS qui reflètent la complétude et la frâıcheur moyenne du flux d’information
agrégé. Nous proposons une stratégie de rafrâıchissement du ”meilleur effort” qui maximise la
qualité de l’agrégation par rapport aux autres approches existantes avec un nombre moyen de
rafrâıchissements identique. Nous présentons une analyse des caractéristiques générales de l’activité
de publication des flux RSS réels en se focalisant surtout sur la dimension temporelle. Nous étudions
différents modèles et méthodes d’estimation de changements d’activité et leur intégration dans les
stratégies de rafrâıchissement. Les méthodes présentées ont été implémentés et testés sur des
données synthétiques et des flux RSS réels.

Mots clés : flux RSS, stratégie de rafrâıchissement, estimation de changements en-ligne, agrégateur
RSS, web dynamique, qualité de données

Abstract

With the rapidly increasing number of sources and devices connected to the Internet and the
growing success of the Web 2.0 services, the online available web content is getting more and more
diverse and dynamic. In order to facilitate the efficient dissemination of the evolutive and often
temporary information streams (news, messages, announcements), many web applications publish
their most recent information items as RSS and Atom documents which are then collected and
transformed by RSS aggregators like Google Reader or Yahoo! News. Our research is placed in
the context of content-based feed aggregation systems and is focused on the design of optimal
refresh strategies for highly dynamic RSS feed sources. First, we introduce two quality measures
specific to aggregation feeds which reflect the information completeness and average freshness of
the result feeds. We propose a best-effort feed refresh strategy that achieves maximum aggregation
quality compared with all other existing policies with the same average number of refreshes. We
analyse the characteristics of a representative collection of real-world RSS feeds focusing on their
temporal dimension. We study different online change estimation models and techniques and their
integration with our refresh strategy. The presented methods have been implemented and tested
against synthetic and real-world RSS feed data sets.

Keywords: RSS feed, refresh strategy, online change estimation, content-based feed aggregation,
dynamic web content, data quality
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Introduction

In the last twenty years, the Internet has greatly evolved from a hypertext publishing
system to a platform of participation and collaboration [O’R05] among users, also referred
to as Web 2.0. The Web 2.0 services make it easy for individuals, companies and even
non-technical amateurs to create and manage their content online. In particular, many
Web 2.0 applications have emerged that allow users to manage, collaborate and share
their personal information on the Web. Examples include social networking sites for
keeping in touch with friends, family and business partners, online galleries for photos and
videos or blogs for sharing diaries or travel journals, such as Blogger [bloa] blog publishing
service, Wikipedia [wika] online encyclopedia, Flickr [fli] photograph sharing, Delicious
[del] bookmark sharing, Digg [dig] social news website, Facebook [fac] social network and
Twitter [twi] microblogging service.

This great accessibility of the Web 2.0 applications empowers users in the creation and
management of content and has led to an explosion of new online materials, also known as
user generated content (UGC). In 2006 Time magazine featured UGC as the ”Person of
the Year” [tim], in which the person of the year was ”you”, meaning all of the individual
online content creators who contribute to user generated media. Other examples that
illustrate the general online dynamics and rapid growth include the collaborative online
encyclopedia Wikipedia [wika] that reports reaching almost 8000 updates per hour for the
English articles and 2000 for the French ones [wikb]. Analyzing blogosphere growth, NM
Incite [nmi] tracked over 181 million blogs around the world by the end of 2011, up from
36 million only five years earlier in 2006. The free news aggregator Google News [goob]
covers news content aggregated from more than 25,000 publishers [gooc] from around the
world and covers about 4500 sites for the English language, each of them having its own
independent publication activity. Furthermore, there are numerous services that offer real
time monitoring and live updates and analysis of the stock market, domain known for its
highly dynamic nature.

The rapid growth of online information sources makes it difficult for a user to stay up
to date with what is new on the Web. This problem has been partially solved by the
introduction of the RSS [rssa] and Atom [ato] data formats, that have become the de-facto
standards for efficient information dissemination. They allow the users to stay informed
by retrieving the latest content from the sites they are interested in. Technically speaking,
an RSS feed is a standard XML document containing a list of items, the publication of
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each item corresponding to a change on the site associated to that RSS feed. The number
of items in this list is generally limited to the last published articles. By subscribing to
RSS feeds, users save time and obtain the last modifications without having to visit the
site separately and also preserve their privacy, by not needing to join the site’s email
newsletter. RSS is largely used for update diffusion and Figure 1 illustrates the typical
type of sites RSS can be found on.

Figure 1: RSS top ten site category distribution

In order to help users access and stay up to date with the new content disseminated through
the RSS feeds they are subscribed to, a number of RSS aggregators have recently emerged
and are gaining popularity, such as Bloglines [blob], Google Reader [good], RSScache
[rssc] or Technorati [tec]. Having an RSS aggregation service as the central access point
to reading news, it becomes much simpler for a user to discover and manage new content
from a large set of RSS source feeds.

Generally speaking, content aggregators (such as RSS feeds syndication systems, but also
search engines) have two choices. They can pull the online available content, by proactively
crawling the Web for detecting new information using a standard search engine or they
can agree with the content providers on a set of protocols to push the content to the
aggregators. Nevertheless, it is the pull protocol approach that has been widely adopted
in today’s Web and we briefly discuss here some of the main reasons. First, the adoption
of a push-based data exchange complicates communication, by adding an extra set of rules
and conventions that both the content providers and aggregators must follow. On the other
hand, using the pull protocols like HTTP or XML-RPC preserves the high autonomy of
both information providers and aggregators. Second, a major disadvantage of the push
protocol is its lack of scalability. Using the push protocol compels the content providers
to maintain user state, such as a subscriber list that might become very large in time
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and therefore, hard to manage. However, the pull protocol works without needing the
content providers to be aware of the subscribed aggregators. And finally, adopting a push
protocol requires the existence and maintenance of a trust relationship between content
providers and content aggregators, which is very difficult to manage and highly unlikely
in the Web’s reality. A more elaborate discussion together with related work references
on pull and push protocols is presented in Section 3.1.

When considering the underlying communication protocol, from the point of view of a
web server there is no distinction between RSS feeds and web pages or any other web
resources. All kinds of resources have to be refreshed by using the standard pull-based
HTTP protocol where changes can only be detected by explicitely contacting the content
provider server. Therefore aggregators as well as search engines face the same type of
challenge: deciding when is the optimum refresh time moment of each resource.

Our research work is situated in the context of the RoSeS project (Really Open Simple
and Efficient Syndication) [rosa], a content-based feed aggregation system. Its goal is to
define a set of web resource syndication services and tools for localizing, querying, gener-
ating, composing and personalizing RSS feeds available on the Web. A RoSeS aggregator
represents an RSS feed sharing system in which users are allowed to register content-based
aggregation queries defined on a set of input RSS feeds, whose results are made available
to users as a newly created output RSS feed. For that, it has to periodically retrieve the
newly published content on the ever changing RSS feed sources.

Placed in the context of the content-based feed aggregation systems, the main goal of this
dissertation is to improve the aggregation quality by designing optimal refresh strategies
and online change estimation techniques adapted for crawling highly dynamic RSS feed
sources. Despite the apparent simplicity, feed aggregation systems have many inherent
challenges:

• Large scale. Not only that the Web is very large, but it is also permanently
evolving and so are the RSS feeds hosted on websites. Therefore, feed aggregators
must support an extremely high throughput by dealing with a large number of feed
content providers and consumers while seeking high aggregation quality.

• Highly dynamic content. As any web resource, RSS feeds evolve independently
of their clients and may suddenly change their publication activity. Even if the
aggregator supports large scale syndication, it could never keep up with all the
dynamic changes of all the feeds.

• Refresh decision. In order to assure the proper functioning of an aggregator, it
must use an intelligent refresh strategy that decides when to refresh each feed source
such as to assure aggregation quality maximization within a minimum cost.

• Limited resources. Not only that crawlers should respect politeness policies by
not imposing too much of a burden on the content providers, but they are also
constrained by their own internal resource limitations, such as bandwidth, storage,
memory or computing consumed resources, minimizing the overall cost.
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• Information loss. Since each newly published content item removes the oldest
item in an RSS feed, an aggregator that does not refresh the feed quickly enough
may face item loss. An optimal refresh strategy should not miss important content
and keep the completeness of the aggregated data at high scores.

• Time sensitiveness. As the result content of many aggregation queries applied on
RSS feeds are related to real world events, the value of a piece of such information
degrades itself in time. An optimal refresh strategy deployed on a feed aggregator
should be able to retrieve quickly the newly published content, such as to keep a
high level of freshness aggregation quality.

• Incomplete knowledge. The dynamic nature of the web content leads to the
necessity of continually updating the publication frequency estimations, using online
estimation techniques. Since the source publication models are updated only at the
time of refresh, online estimators have to deal with incomplete knowledge about the
data change history, not knowing exactly how often, how much and when a source
produces new information items.

• Irregular estimation intervals. In many web applications, data sources are not
refreshed in regular time intervals. The exact access moment is decided by the
refresh strategy, conceived to optimize certain quality measures within a minimum
cost. Irregular refresh intervals and incomplete change history make the estimation
process very challenging.

Contributions

In this dissertation, we address the challenges previously mentioned when designing, im-
plementing and evaluating a content-based feed aggregation system. The main problems
presented and studied in this dissertation as well as our different contributions try to
answer the following list of questions.

How a content-based feed aggregation system should be conceived and which
are its main characteristics? Users of a content-based feed aggregation system want
to stay informed with the latest content on the topics and from the RSS feed sources
they are interested in. For that, they register different aggregation queries that reflect
their interests on RSS feed sets of their choice. The results of the aggregation queries are
then made available to users as newly created RSS feeds. We propose a declarative feed
aggregation model and architecture for a content-based feed aggregation system with a
precise semantics for feeds and aggregation queries.

How should we evaluate the quality of a feed aggregation system and which
are the quality measures adapted for that? For evaluating the quality of the aggre-
gation query results, we propose two different measures: feed completeness and window
freshness. Feed completeness evaluates coverage of retrieved feed items corresponding to
an aggregation query. Window freshness measured at a certain time moment reflects the
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fraction of recently published feed items that have not been retrieved yet. A maximum
window freshness shows that the RSS feed result of an aggregation query is up to date
with all its RSS feed sources. The proposed quality metrics (feed completeness and win-
dow freshness) considered simultaneously were designed to reflect the quality of newly
produced aggregation feeds within a content-based feed aggregation system.

When should the crawler of a feed aggregation system refresh the RSS feed
sources and what makes a refresh strategy optimal? We propose a best effort re-
fresh strategy based on the Lagrange multipliers [Ste91] optimization method that retrieves
new postings from different feed sources and maintains an optimal level of aggregation
quality, obtained with a minimum cost. Our strategy maximizes both feed completeness
and window freshness, fetching new items in time and avoiding item loss. The proposed
policy is supported by an extensive experimental evaluation, where its performance and
robustness are tested by comparing it to other refresh strategies.

How much new information do the RSS feeds publish every day? When exactly
do they publish it? Are there any patterns in their publication activity? In
order to better understand the publication behavior of real RSS feeds, we propose a general
characteristics analysis with a focus on the temporal dimension of real RSS feed sources,
using data collected over four weeks from more than 2500 RSS feeds. We start by looking
into the intensity of the feed publication activity and into their daily periodicity features.
We also classify the source feeds according to three different publication shapes: peaks,
uniform and waves.

How should the feed publication behavior should be modeled? What is an
appropriate estimation model? How can we keep the estimation models up to
date with the continually changing feed publication activities? Inspired by the
observations made on the real RSS feeds publication behavior, we propose and study two
different models that reflect different types of feed publication activities. Furthermore, we
propose two online estimation methods that correspond to the publication models that are
continually updated in order to reflect the changes in the real feed publication activities.
We provide an experimental evaluation of the online estimation methods in cohesion with
different refresh strategies and an analysis of their effectiveness on sources with different
publication behavior was made.

Organization of the Dissertation

This rest of the dissertation is structured as follows. Chapter 1 introduces some fundamen-
tal notions of the content-based feed aggregation domain. We describe the architecture
of our aggregation system in order to better understand the proposed methods and also
introduce a formal content-based feed aggregation model. Chapter 2 defines our two ag-
gregation oriented quality measures: feed completeness and window freshness. We also
explain here the saturation problem specific to RSS feeds and give an item loss measure.
In Chapter 3 we discuss the general problem of web crawling, by introducing some key
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factors and objectives usually targeted by the web crawlers that impact the web crawling
policies. We then focus on the RSS feeds crawling specific problem by outlining some ex-
isting approaches proposed in research regarding feed refresh strategies. In Chapter 4 we
propose a best effort refresh strategy specially conceived for feed crawling. It maximizes
aggregation quality (feed completeness and window freshness) while using a minimum
cost. Experiments that test our strategy against other refresh strategies are presented at
the end of the chapter.

We then briefly describe in Chapter 5 some publication activity characteristics of real
RSS feeds analyzed in the research literature, followed by an examination of web change
models proposed for both web pages and RSS feeds. We also analyze different methods
to estimate the web change models and focus on online estimation methods. Chapter
6 introduces a real RSS feeds analysis with an emphasis on the temporal dimension of
the publication activity. We look into publication activity, periodicity and shapes. In
Chapter 7 we propose two different ways to model the publication activity of a feed source
and examine methods for updating online these publication models in order to reflect the
changes in the real feed publication activities. We present an experimental evaluation of
the online estimation methods, testing them in cohesion with previously introduced refresh
strategies. We further discuss the results obtained for sources with different publication
behaviors that show the efficiency of our proposed methods.

Finally, in the conclusion chapter, we resume with a summary and discussion of our work,
we outline the main contributions and raise a number of issues that we regard as important
for future work.
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Chapter 1

Content-Based Feed Aggregation

In this chapter, we introduce the notion of content-based feed aggregation. We present the
functionalities of a RSS feed aggregation system, define a formal aggregation model and
semantics. Last, we define a model for content-based aggregation networks and propose a
network generation method, inspired by the existing theoretical models for characterizing
the Internet structure.

1.1 RSS and Atom Standards

RSS [rssa] and Atom [ato] represent standard XML based data formats for publishing
frequently updated information such as news headlines, blog entries or podcasts in order
to ease the syndication of the web sites contents to subscribers. Note that throughout this
dissertation we usually use the term of RSS to denote both RSS and Atom standards.

Technically speaking, an RSS feed is a standard XML document containing a list of time-
stamped text descriptions including links to the corresponding web pages. The size of
this list is generally limited to a constant value, where the publication of a new item
usually removes the oldest one in the corresponding window. From the users point of
view, RSS documents are perceived as a stream of items pushed to their screen. However,
when considering the underlying communication protocol, from the point of view of a web
server there is no distinction between RSS feeds and other web resources. Both kinds of
resources have to be refreshed by using the standard pull-based HTTP protocol where
changes can only be detected by explicitely contacting the server.

A feed in Atom terminology (or channel in RSS terminology) is identied by a URL from
which feed entries are fetched. A feed document contains a list of items (or entries) as well
as additional metadata information that characterizes the feed itself, such as feed id, title,
publish date and feed categories. Each item contains a list of elements, such as the entry
id, the title, the link from which detailed information can be obtained, the publication and
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the update date of the entry and the entry categories. Most of these elements are optional.
An example of an RSS document is shown in Figure 1.1.

Figure 1.1: A sample RSS feed

The postings are arranged in the reverse chronological order where new postings are ap-
pended in the front and old postings are pushed downwards and removed. For the majority
of current implementations, an RSS document contains the most recent 10 or 15 postings.
New postings are added to the feed at any time without notifying their subscribers; thus,
the subscribers have to poll the RSS feeds regularly and check for updates.

1.2 Feed Aggregation System

We define a content aggregator as a system that gathers web content coming from different
online information sources for subsequent reuse, such as content distribution to users to suit
their needs. Feed aggregators help users access and stay up to date with the new content
disseminated through RSS feeds. They reduce the time and effort needed to regularly
check websites for updates, creating a unique and personalized information space. There
are various examples of content aggregation systems, but in this dissertation we focus on
the case of RSS feeds syndication systems.

We place our work in the context of the RoSeS project (Really Open Simple and Efficient
Syndication) [rosa]. RoSeS is a feed aggregation system of RSS [rssa] feed sharing in which
personalized feeds defined by content-based aggregation queries are delivered to users.

As shown in Figure 1.2, a RoSeS aggregator mediates the interaction between a set of users
and the set of data sources to which it is subscribed to. Users define a set of content-based
aggregation queries (introduced in Section 1.3) over a subset of the sources. Data sources
constantly generate new pieces of information, called items, entries or postings. One data
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Figure 1.2: RSS Aggregator

source typically corresponds to a single (RSS [rssa] or Atom [ato]) feed. We say that the
aggregator is subscribed to a data source, that it is a subscriber for a data source and we
call a subscription the interaction between the aggregator and a data source. Conforming
to standard web protocols, we assume a pull -based architecture, where the aggregator
needs to periodically contact the sources in order to fetch the most recent postings from
each of them. The exact refresh moment of each source is decided by the refresh strategy
employed by the aggregator.

The result of an aggregation query applied on a set of periodically refreshed input feeds
is represented by a new feed, typically created for two reasons. In the first case, the
aggregator serves as an information diffusion and sharing tool among users, as the newly
created feeds are published by the aggregator in order to be consumed by users or to
serve as data sources for other aggregators. And secondly, the aggregator archives the
newly created feeds. Storing feeds in databases is particularly interesting for data mining
techniques and time series analysis for an increasingly important class of applications.

1.3 Content-Based Aggregation

The RoSeS system allows to formulate complex aggregation queries [TATV11] with joins
and windows on feeds. Here we consider only the simplified case of stateless continuous
queries computing a filtered union of source feeds, which represent an important subset of
useful queries.

Content-based aggregation queries are defined in a declarative RSS query language on a
subset of the data sources the aggregator is subscribed to. They are typically defined by
users at the aggregator level, thus defining personalized RSS feeds. The result of each
query is a newly created feed that can be accessed locally, be published by the aggregator
to be available for other users or be stored in a database. We assume that a user might
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define tens or hundreds of such aggregation queries on hundreds or thousands of source
feeds.

For example, a user wants to create a feed with news about volcano eruptions in Iceland
fetched from ”The Guardian” and images published by ”The Big Picture” on the same
topic. This can easily be translated into the following aggregation query which applies a
simple disjunctive filtering condition on the union of the corresponding feeds:

CREATE FEED IceVolEruFeed AS

RETURN "http://feeds.guardian.co.uk/theguardian/rss" AS $guardian |

"http://www.boston.com/bigpicture/index.xml" AS $picture

WHERE $guardian[ITEM CONTAINS "iceland" OR

ITEM CONTAINS "volcano" OR

ITEM CONTAINS "eruption"] AND

$picture[CATEGORY = "iceland" OR

CATEGORY = "volcano" OR

CATEGORY = "eruption"];

This query filters all items of both sources which contain at least one of the three terms
”iceland”, ”volcano” and ”eruption”. The overall aggregation infrastructure is illustrated
in Figure 1.3 which shows two aggregators nodes aggregating feeds from two sources.

Figure 1.3: Aggregation queries

1.4 RSS Feed Aggregation Model

In this section we present feeds from several points of view. First, we define two different
semantics for RSS feeds. A feed can be seen both as a continuous stream of all items
published until a certain moment and, at the same time, as a publication window that
holds only a finite subset of items most recently published. And last, we analyze feeds by
their provenance. We distinguish between source feeds and query feeds and explain the
way they are created and used. The concepts introduced and discussed in this section
serve not only for a better understanding of feeds and aggregation in general, but they are
also useful for the further concept definitions we present later.
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1.4.1 Feed Semantics: Windows and Streams

There are mainly two different interpretations of a feed f . In the first case, we consider a
feed as a continuous and possibly infinite publication stream of items. And in the second
case, which corresponds to the standard document-based interpretation of RSS feeds, a
feed f is represented by a limited number of items available in a XML document at some
time instant t. Similarly as in a queue, publishing a new item consists in adding it at the
beginning of the document and deleting, if necessary, the last item in the same document.
The publication process is guaranteed to be done without insertion: all newly published
items are appended at the beginning of the document. We will call this document a
publication window.

Definition 1.4.1. Item
We consider a simplified representation of an item i(t,Ki) as described by a publication
date t and a set of keywords Ki that accompanies the content of the item.

Definition 1.4.2. Publication stream
We call the publication stream of a feed f the (possibly infinite) set of items published in
f until time instant t and we denote it by F (f, t).

F (f, t) = {i(ti)/ti ≤ t}

More formally, we suppose that timestamps are values in a linear time dimension (T,<).
Then, it is possible to define the semantics of a feed as follows: let F (f, t) denote the items
sequence generated by f until t; then for any two time instances t and t′:

• if t = t′, then F (f, t) = F (f, t′) and

• if t < t′, then F (f, t) ⊆ F (f, t′) and the set difference of the two feeds represents
a possibly empty sequence of items published between t and t′: F (f, t′) \ F (f, t) =
{i(ti)/t < ti ≤ t′}.

Definition 1.4.3. Publication window
The publication window A(f, t) of a feed f at some time instant t represents the subset
of items available (or valid) at t in the publication stream F (f, t). We denote by Ws the
size of the publication window: |A(f, t)| = Ws.

A(f, t) = {i(ti)/i(ti) ∈ F (f, t), |i(tj)/tj > ti, i(tj) ∈ F (f, t)| < Ws}

Observe that the publication stream of a feed at some time instant represents the union
of all publication windows up to that time instant:

F (f, t) =
⋃
t′≤t

A(f, t′)
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1.4.2 Source and Query Feeds

In this section, we analyze and discuss feeds from their provenance point of view, as well
as the way they are created and used. We distinguish between source feeds and query
feeds. In the first case, we use them as input feeds consumed by the aggregator and ignore
the way they are created; we call them source feeds. In the other case, we talk about query
feeds when they represent the output feeds generated by an aggregator as the result of
aggregation queries.

Definition 1.4.4. Source feed
A source feed s represents the feed generated by a source, by constantly publishing new
items.

Definition 1.4.5. Query feed
Let q be the aggregation query applied by an aggregator on a set of source feeds S =
{s1, ...sk}. The result of q is called a query feed and is denoted by f = q(S).

As already mentioned in Section 1.3, in this dissertation we focus on the frequent case
of aggregation queries computed as a union of filters over source feeds sets and has the
general form: q(S) =

⋃
j σj(Sj), where S = ∪jSj .

A filter applied on a set of source feeds σj(Sj) selects the items published by those source
feeds that satisfy a given item predicate. Item predicates are boolean expressions (using
conjunctions, disjunctions, negation) of atomic item predicates that express a condition
on an item attribute. Depending on the item attribute type, atomic predicates may be
applied on the publication date of an item, on the content of an item or on the set of
categories that describes an item. A complex model of aggregation queries specific to the
RoSeS system is presented in [TATV11].

We resume the example presented in Section 1.3 that shows how the query feed f =
IceVolEruFeed is created as a union of two filters applied on two different feed sources,
f = q(s1, s2) = σ1(s1) ∪ σ2(s2). The two input feed sources come from two different
websites, s1 =”The Guardian” and s2 =”The Big Picture”. The filter applied on the
first source σ1(s1) selects those items that contain the keywords ”iceland”, ”volcano” or
”eruption” in their content. The second filter applied on the second source σ2(s2) selects
only the items that contain the same three keywords within the set of keywords associated
to each item.

The items contained by the query feed f = q(S) published by the aggregator come from
the input source feeds in S and have passed the conditions imposed by the filters σj
(they are said to be relevant to query q). We consider that the items are sorted on their
publication date before being inserted in the query feed f . Other sorting criteria may also
be considered, such as the source feed sj from which the item comes from or some sort of
item importance score.

Any query q applied on a set of source feeds introduces a selectivity factor with values
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in sel(q) ∈ [0, 1]. We consider that sel(q) = 1 if the aggregation query keeps all the
items coming from the input source feeds (just a simple union, with no real filtering) and
sel(q) = 0 if it filters out all items (all filters generate the empty result σj(Sj) = ∅).

The feed aggregation system introduced in Section 1.2, denoted here by n, can now be
formally defined by the set of aggregation queries Q(n) = {q1, ...qk} on S(n) = {s1, ...sm}.
The set of source feeds of a query q and an aggregator node n is denoted by S(q) and
respectively by S(n). Thus, S(n) = {S(qi)/qi ∈ Q(n)}.

1.5 Feed Aggregator Architecture

The general architecture of a feed aggregator node, typically a RoSeS node, is shown in
Figure 1.4. It consists of three layers connected through unsynchronized item buffers: the
crawler is in charge of crawling the collection of registered source feeds, the query processor
executes a content-based query plan and generates for each aggregation query a query feed
which is delivered by the publisher according to the different kinds of user subscriptions.
The aggregator node transforms the publication windows of the source feeds into query
feeds, by applying content-based aggregation queries.

Figure 1.4: Feed aggregator node architecture

Crawler: The crawler layer periodically contacts the source feeds it is subscribed to and
pulls the items available in their publication windows. The choice of the refresh moment of
each source is taken by the refresh strategy (detailed in chapter 4) used by the aggregator.
All newly retrieved feed items that were not fetched before are written into a read buffer,
for the next layer to process.

Query Processor: The query processor continuously consumes the items produced by
the crawler and stored in read buffers by applying aggregation queries to the corresponding
items coming from different feed sources. The evaluation of the query plans are done by
continuously processing the incoming feed items according to the set of aggregation queries.
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The query processing approach is outside the scope of our research, but related work can
be found in [TATV11].

Publisher: This module is responsible for transforming the results generated by the
query processor into different output formats. The standard scenarios are to generate a
new RSS query feed for each aggregation query and publish them for the user consumption
or store them in a database for archiving purposes. Other output formats are also possible
(SMS, email, Atom feed).

1.6 Feed Aggregation Network

The query feeds generated and published by an aggregator can also serve as input source
feeds for other aggregators. If we compose several such aggregators nodes we obtain a feed
aggregation network with continuous information diffusion paths.

Each node in the sharing graph can have the hybrid role of a data source and consumer
in the same time, as can be seen in Figure 1.5. Nodes that have only a source role create
new data and represent the entry points of the information in the system. The nodes
with consumer roles are characterized by their different interests in the data produced by
the sources. They can by interested by the entire information produced by a source, or
only by a part of it, interests defined by different aggregation queries. As a node receives
information from other source nodes, it can further distribute it into the system, having
thus a hybrid producer-consumer role.

Figure 1.5: Feed aggregation graph

In the following sections, we introduce a feed aggregation subscription graph model and
propose a method to construct the topology of such a network, inspired by the Internet
topology.
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1.6.1 Aggregation Network Model

Definition 1.6.1. Subscription graph
A subscription graph is defined as a directed acyclic graph G(V,E), where:

• V is a set of feeds fi; we differentiate between two types of nodes: source feeds and
query feeds that corresponds to an aggregation query qi and

• E contains an edge (fi, fj) if fj is defined on fi: ∃qj such that fj = qj(S) and fi ∈ S.

Observe that in this context, an aggregator n, as defined in Section 1.5, is represented
here by a subset of nodes fi from the subscription graph. The aggregator is defined as a
set of aggregation queries qi ∈ Q(n) on S(n) and each of them results in a corresponding
set of query feeds fi = qi(S(qi)), where S(qi) ⊂ S(n).

1.6.2 Aggregation Network Topology

We propose and analyze a syndication graph generation model designed as an internet-
like topology. The original topology generation model that inspired us can be found in
[FKP02, BBB+03] which is an internet-like tree topology with a power law distribution of
degrees as observed in [FFF99]. Its advantage is that it is a natural and beautifully simple
model of network growth involving a trade-off between geometric and network objectives.

Our goal is to create a network topology easy to introduce/design and to work with that
associates potential source feeds to aggregation queries defined on them that assures the
information diffusion in the graph. Differently put, we want that an aggregation query
that filters on a set of keywords to be defined on source feeds that publish on (at least one
of) those keywords, having in the same time a position close to the initial feed sources in
the graph.

Principle As input, we have a set of nodes in the subscription graph defined as a set
of source feeds S = {s1, ...sm} that represent the initial entry points of information in the
graph. The nodes in S are not connected to each other. Furthermore, we complete the set
of nodes of the subscription graph with a set of query feeds F = {f1, ...fk}, each defined
by an aggregation query qi ∈ Q. The goal is to connect the node fi ∈ F in the graph (to
the nodes in S or to other nodes fj ∈ F, fj 6= fi already connected).

Node Profile We say that every node (source feed or query feed) is described by a node
profile that consists in a set of keywords on which the node publishes (in the case of a
source feed or query feed) or in which the node is interested (in the case of a query feed).

We define a dictionary as the complete set of keywords Dictionary = {k1, ...kd} on which
the nodes can be characterized. We define the profile of the node n as the binary descriptor
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array Profile(n) of the same size d as the dictionary, defined as follows:

Profile(n)i =

{
1 if node n publishes in the category ki ∈ Dictionary
0 otherwise

We also use the Jaccard distance between two node profiles JDist(ni, nj) ∈ [0, 1] to com-
pare the dissimilarity between the two of them. It is defined as:

JDist(ni, nj) = 1− Profile(ni) ∩ Profile(nj)
Profile(ni) ∪ Profile(nj)

= 1− K11

K10 +K01 +K11

where K11 represents the number of keywords common for both profiles ni and nj , K10

the number of keywords defined for the profile of ni, but not for nj and K01 the number
of keywords not defined for the profile of ni, but defined for nj . If K00 represents the
number of keywords defined for neither of the two profiles, then K10 + K01 + K11 + K00

represents the size of a node profile.

Connecting the Query Nodes In our model a tree is built with each source feed in
sk ∈ S as tree root. When query feed node fi arrives, it attaches itself on one of the nodes
already connected in the tree. Note that, except the root that has indegree 0, all nodes in
the tree of root sk have an indegree of 1 (only one entering edge). The first condition for
the query feed node fi to be connected in the tree of root sk is for the two node profiles sk
and fi to be closer than a given radius threshold. If the condition JDist(sk, fi) ≤ radius
is met, we say that fi in the influence radius/area of source feed sk. Once we decided to
connect fi to the tree of root sk, one criteria for choosing the node to which fi connects to
is the one to which it is the most similar to. Another criteria is to connect it to a centrally
located node, such that its hop distance to the other nodes is minimized. Node fi attaches
itself to the already connected fj that minimizes the formula:

hops(fj) + α · JDist(fj , fi)

where JDist(fj , fi) is the Jaccard distance between fi and fj and hops(fj) is the number
of hops from the root sk to node fj (other measure of centrality of node fj can also be
used). α is a parameter that amplifies or reduces the influence of the similarity between
node profiles.

The behavior of the model depends on the value of parameter α. If α is very small then
the similarity between node profiles (Jaccard distance) is not important and the resulting
network shape is similar to a star with all query feeds connected directly to the source feed
root of the tree (the root has the maximum node outdegree). As the value of α grows, the
topology becomes more and more clustered. On the other end, if α roughly grows bigger
than the number of the nodes connected in the tree of root sk (α >

√
|tree(sk)|), then the

similarity between two profile nodes becomes very important and the resulting topology
tends to be random and not clustered at all.

In order to illustrate the influence on α over the network shape we present in Figure 1.6
different resulting topologies obtained for 10000 nodes described in geometrical coordinates
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instead of multidimensional node profiles (we use the Euclidian distance instead of the
Jaccard one) and different values of α.

We repeat the connecting model for each source feed sk ∈ S. This way, all query feed
sources fi ∈ F has access to the data it is interested in from all sources. Since the resulting
network topology depends on the order in which query feed nodes fi ∈ F are connected
in the tree of root sk, we sort the set of query feed nodes F in descending order of node
profiles coverage: node profiles with more values of 1 (nodes that are interested in more
keywords) will be classified before those with less 1 values (that have fewer interests).

1.7 Conclusion

In this chapter we have presented the concept of content-based feed aggregation, a cen-
tral notion for our research topic. We informally introduced a feed aggregation system
and explained its functionalities and usages. We described what types of content-based
aggregation queries can be registered at the aggregator level and illustrated this with an
example. We also proposed a formal aggregation model, discussing feeds from several
points of view. On the one side, we examine feeds semantics, by differentiating between
a publication window and a publication stream. On the other side, we analyze feeds by
their provenance, creation method and usage, distinguishing between source feeds and
query feeds. We propose a feed aggregator architecture in three layers: crawler, query
processor and publisher. As aggregators can be interconnected, we present a feed aggre-
gation network model and discuss a topology generation method, inspired by the Internet
structure. The discussed concepts are fundamental for introducing in the next chapter
different specific RSS feed quality measures.
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(a) α = 4 - Topology and outdegree distribution

(b) α = 20 - Topology and outdegree distribution

(c) α = 100 - Topology and outdegree distribution

Figure 1.6: Network topologies for different values of α
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Chapter 2

Feed Aggregation Quality
Measures

Preserving the quality of the aggregated feeds represents an important challenge for the
content-based feed aggregation systems. The quality of a newly created aggregated feed
reflects its capacity of being fresh and complete relative to its source feeds. In other words,
all items of interest published on the source feeds should be fetched as soon as possible
after they are published. In this chapter, we define several types of aggregation quality
measures. First, we introduce the notion of divergence to describe the amount of new
items published by a source and not yet fetched by the aggregator. We also propose the
concepts of saturation and item loss that explain what happens when a source feed is not
refreshed for a long time and items are missed. We further define two feed aggregation
quality measures that reflect item loss in different ways: the feed completeness and the
window freshness. Feed completeness characterizes long-term aggregation processes and
considers item loss as being definitive, where lost items are lost forever. On the other
hand, window freshness considers aggregation process from a short-term point of view. In
this case, window freshness is concerned with temporary item loss, taking into account
only the missed items that still can be retrieved at refresh time.

We present a small reminder of some of the notions introduced in the previous chapter that
are useful throughout this one. Let S(n) = {s1, ...sm} be a set of source feeds to which
the aggregator node n is subscribed to. Suppose the simple model where the aggregator
node n is defined by a set of aggregation queries Q(n) = {q1, ...qk} defined on S(n). Let
S(qi) = {si1, ...sij}, S(qi) ⊂ S(n) be the set of sources on which query qi is defined. Each
aggregation query qi generates a new query feed defined as fi = qi(S(qi)). The aggregator
node n refreshes periodically its sources S(n), the choice of which sources to refresh and
when being made based on its refresh strategy. When aggregator node n refreshes source
si ∈ S(n) at time t, it fetches the items available in the publication window A(si, t) of the
source feed si at the moment of refresh t. The purpose of this chapter is to describe how
the refresh process impacts the feed aggregation quality.
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2.1 Divergence

We focus on the aggregator node n, that applies an aggregation query q on the source s,
where s ∈ S(q). As introduced before, query q generates a new query feed f = q(S(q)),
where the aggregation query q represents a union of filters over the source feeds in S(q).
When discussing divergence, we examine how the changes that are of interest for the
aggregation query q and that occur on the source feed s are perceived and captured by
the aggregator n.

We begin by formally defining the notion of divergence, as well as the measure proposed
to evaluate it.

Definition 2.1.1. Divergence
Let Tr represent the last time moment before time t when source s has been refreshed by
the aggregator. We define the divergence function Div(s, t, Tr) measured at time t > Tr
as the total number of new items published by the source s in the time period (Tr, t] that
were not yet fetched by the aggregator.

Definition 2.1.2. Divergence relevant to query q
We similarly define the divergence function Div(s, q, t, Tr) measured at time t as the total
number of new items relevant to query q published by the source s in the time period
(Tr, t].

We suppose that the relevant items to query q are published uniformly distributed in time,
such that the selectivity sel(q) is considered constant. If the selectivity sel(q) of the query
q and the divergence Div(s, t, Tr) of the source s are known, then we can estimate the
divergence relevant to query q as:

Div(s, q, t, Tr) = sel(q) ·Div(s, t, Tr)

Observe that the values of the divergences relevant to two different queries q and q′ defined
on the same source s and measured at the same time instant t can be different, especially if
the selectivities of the two queries are different (if sel(q) 6= sel(q′)), then Div(s, q, t, Tr) 6=
Div(s, q′, t, Tr).

Definition 2.1.3. Divergence relevant to a set of queries Q
Let Q be the set of disjoint queries defined on source s by an aggregator node: ∩qi = ∅,
where qi ∈ Q. We define the divergence relevant to the set of queries Q measured at time
t as the sum of the divergence functions relevant to all queries qi ∈ Q.

Div(s,Q, t, Tr) =
∑
qi∈Q

Div(s, qi, t, Tr)

To better understand how the divergence function behaves in time, we introduce an exam-
ple in Figure 2.1. Let Tr−1, Tr and Tr+1 represent the time moments at which source s is
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refreshed. We consider separately the cases when the aggregation query keeps all the items
coming from the input source s (when the selectivity takes its maximum value sel(q1) = 1)
and when it filters out some of the incoming items (when selectivity is sel(q2) < 1).

Figure 2.1: Divergence function

In the case of simple union, when the aggregator node is interested in everything source
s publishes, the divergence Div(s, q1, t, Tr) represents the total number of new items
published by source s since the last refresh moment Tr. Note that this case is equiva-
lent with the simple form of the divergence function when no query is considered at all:
Div(s, q1, t, Tr) = Div(s, t, Tr). This is a typical situation when the query selectivity takes
the maximum value sel(q1) = 1. This case is represented in Figure 2.1 by the continuous
blue line.

When using the filtering query q2, the aggregator is interested only in those items published
by the source s that pass the filtering condition imposed by q2. In this case, the query
selectivity varies in the interval sel(q2) ∈ [0, 1) and the divergence value is smaller than
in the simple union case Div(s, q2, t, Tr) < Div(s, q1, t, Tr). This is showed in Figure 2.1
by the dotted blue line. Observe that both divergence function lines drop to 0 at refresh
times Tr−1, Tr and Tr+1.

2.1.1 Saturation

Divergence, as defined previously, ignores the constraints imposed by the feed’s publication
window. But what happens when the number of item published by the source exceeds the
size of its publication window before the aggregator gets to refresh? This is what we call
saturation.

Definition 2.1.4. Saturation
Let Ws be the size of the publication window of a source s that was last refreshed at Tr.
We say that source s is saturated at t if the number of newly published items Div(s, t, Tr)
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reaches (and possibly exceeds) the size of its publication window:

Div(s, t, Tr) ≥Ws.

In consequence, we make a distinction between the total number of items published by a
source since the last refresh (stream divergence) and the number of only those available
ones (window divergence).

Definition 2.1.5. Stream divergence relevant to query q
Let F (s, t) be the publication stream of source feed s. Let function new(F (s, t)) be the
sequence of new items generated by s since its last refresh moment Tr. We define the
stream divergence as:

DivF (s, q, t, Tr) = |q(new(F (s, t)))|

Note that the divergence function introduced before (Definition 2.1.2) corresponds to the
stream divergence.

Definition 2.1.6. Window divergence relevant to query q
Let A(s, t) be the publication window of source feed s. Let function new(A(s, t)) return
the sequence of new items published since time moment Tr and still available at source s
at time moment t. We define the window divergence as:

DivA(s, q, t, Tr) = |q(new(A(s, t)))|

Observe that stream and window divergence functions relevant to query q are equal if the
source s is not yet saturated at time moment t:

if |new(A(s, t))| = |new(F (s, t))| < Ws, then DivA(s, q, t, Tr) = DivF (s, q, t, Tr)

Otherwise, as source s becomes saturated, stream divergence exceeds the window diver-
gence value:

if |new(A(s, t))| = Ws, |new(F (s, t))| > Ws, then DivA(s, q, t, Tr) < DivF (s, q, t, Tr)

We introduce an example in Figure 2.2 in order to better understand the evolution in time
of the stream and window divergence functions when different types of aggregation queries
are used: a simple union q1, with sel(q1) = 1, and a filtering query q2, with sel(q2) < 1.

We consider that source s becomes saturated at time instant Tsat. Both the stream and
window divergence functions relevant to query q1 reach the capacity of the publication
window Ws and those relevant to query q2 reach a value estimated near sel(q2) ·Ws. In
Figure 2.2 the saturation point is marked by red lines.
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Figure 2.2: Stream and Window divergence functions

Divergence Monotonicity. In the case of the simple union q1 (presented in Figure 2.2
by the continuous blue lines), the query selectivity has the maximum value sel(q1) = 1.
Both stream DivF (s, q1, t, Tr) and window divergence DivA(s, q1, t, Tr) functions have an
identical behavior until the saturation point. Afterwards, while the stream divergence con-
tinues to increase, the window divergence reaches its maximum value DivA(s, q1, t, Tr) =
Ws. Observe that for the union case q1, both divergence functions are monotonically
increasing.

When using the filtering query q2 (shown in Figure 2.2 by the dotted blue line), the query
selectivity varies in the interval sel(q2) ∈ [0, 1). As before, both stream DivF (s, q2, t, Tr)
and window divergence DivA(s, q2, t, Tr) functions increase similarly until the saturation
point. Afterwards, the arrival of new items at source s will replace items that have not
been fetched yet by the aggregator. This also means that, from this moment on, the
window divergence DivA(s, q2, t, Tr) can decrease (it becomes non monotonic) since new
items irrelevant to q2 might replace relevant items in the publication window of s.

Divergence monotonicity is only guaranteed for the sources that have not reached satu-
ration yet. After the saturation point, the window divergence becomes non monotonic
and can fluctuate, taking values in the interval [0,Ws]. The monotonicity property of the
different divergence functions is used later in chapter 4, for explaining the principle of the
proposed feed refresh strategy.

2.1.2 Item loss

When putting it all together, the saturation problem comes down to the correlation be-
tween 3 functions: the publication window size Ws of a source s, the publication frequency
λ of the source and the refresh rate r with which the aggregator n fetches the published
items from that source.

For example, if a source has a publication window of sizeWs = 10 item and it publishes new
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items with the publication frequency of λ = 10 items/hour, an aggregator that refreshes
that source less than once an hour r = 1 will lose items, as the source becomes saturated
before being refreshed.

Definition 2.1.7. Saturation coefficient
Given the publication window size Ws, the publication frequency λ and the refresh rate r
of the source s, we define the saturation coefficient SatCoeff(n, s) ∈ [0, 1] of source s in
relation with aggregator n as the percentage of items published by s and lost by n:

SatCoeff(n, s) =

{
1− Ws·r

λ if Ws · r < λ
0 otherwise

As an example, given that the value of the publication window size is fixed to Ws = 10, the
graph of the saturation coefficient is presented in Figure 2.3 as a function of the publication
frequency λ and refresh rate r.

Figure 2.3: Saturation coefficient

In case the publication behavior of the sources varies in time (the publication frequency
λ(t) 6= const), which is always the case in real world, the description done by the saturation
coefficient is only an approximate one, useful for well understanding the saturation process.
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2.2 Feed Completeness

In this section we formally define the feed completeness, a quality criteria for content-
based feed aggregation services that evaluates the degree of item loss that occurs during a
long-term aggregation process. This type of item loss is considered to be a permanent one,
i.e. even if the aggregator refreshes the source, there are items that have been published
by the source in the past and are no longer available to be fetched by the aggregator and
the feed completeness can never take the value 1. Also, note that items are irreplaceable:
if an item published by a source is lost, it can not be substituted by fetching another one
from a different source.

Let f = q(s1, ...sk) be a feed generated by some aggregation query q defined on the set of
sources S(q) = {s1, ...sk}. And let F (f, t) be the publication stream generated by feed f
until time instant t. In order to formally define feed completeness, we introduce first the
notion of ideal stream.

Definition 2.2.1. Ideal stream
We define the ideal stream I(f, t) of feed f until time instant t, as depending on the nature
of the feed f :

• if f = s is a source feed (as introduced in Definition 1.4.4), then the ideal stream of
s, I(s, t), corresponds to the stream of all items published by s until time instant t:
I(s, t) = F (s, t);

• if f = q(s1, ...sk) is a query feed (see Definition 1.4.5), then I(f, t) = q(I(s1, t), ...I(sk, t))
corresponds to the stream of items generated by applying the aggregation query q
on the streams of items generated by the sources of the query S(q) = {s1, ...sk} until
time instant t.

Observe that for any feed f generated by query q, the publication stream of f is always
included in the ideal feed of f :

F (f, t) ⊆ I(f, t)

Definition 2.2.2. Feed completeness
The feed completeness of a query feed f at some time instant t is denoted CF (f, t) ∈ [0, 1]
and estimates the item loss of the aggregation process generating the feed by comparing
the number of items in the publication stream F (f, t) with the number of items in the
ideal feed I(f, t):

CF (f, t) =
|F (f, t)|
|I(f, t)|

We say that a query feed f is complete when its feed completeness takes the maximum
value CF (f, t) = 1, that is if it contains all the items published since the creation of the
feed on all its sources si ∈ S(q) on which feed f = q(S(q)) is defined.
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2.3 Window Freshness

In this section we define the window freshness, another quality measure for content-based
feed aggregation services. Window freshness evaluates item loss, but from a short-term
point of view. We consider item loss as being temporary, i.e. all items that have not been
already fetched by the aggregator can be retrieved as soon as it refreshes the source and
the window freshness takes the value 1.

Window freshness takes values in the interval [0, 1] and measures the quality of the aggrega-
tor publication window by the fraction of items which are available both in the publication
window and in the corresponding source feed at the same time instant. It is defined in
two steps. The first step defines window freshness of a query feed f generated by filter
query q with respect to a single source feed s ∈ S(q), denoted by FW (f/s, t). The second
step defines window freshness with respect to all sources si ∈ S(q), denoted by FW (f, t).
Furthermore, we define window freshness with respect to all sources si ∈ S(q) computed
over a period of time, denoted by FW (f).

Definition 2.3.1. Window freshness with respect to a single source
Window freshness with respect to a single source feed s ∈ S(q) compares the number of
items relevant to query q available both on the publication window of the source feed s
and on the publication stream of the query feed f at time instant t, for |q(A(s, t))| > 0:

FW (f/s, t) =
|F (f, t) ∩ q(A(s, t))|

|q(A(s, t))|

By definition, FW (f/s, t) = 1 if |q(A(s, t))| = 0.

Definition 2.3.2. Window freshness with respect to all sources
The window freshness of a query feed f at time t with respect to all sources si ∈ S(q) is
defined as the average of all single-source freshness scores:

FW (f, t) =
1

|S(q)|
∗
∑

si∈S(q)

FW (f/si, t)

We say that a query feed f is fresh and its window freshness with respect to all its sources
S(q) = {s1, ...sk} takes the maximum value FW (f, t) = 1 if f contains all the items that
are available at time instant t in the publication windows A(si, t) of all sources si ∈ S(q)
and that are relevant to query q.

Definition 2.3.3. Window freshness over a period of time
The window freshness of a query feed f with respect to all sources si ∈ S(q) computed
over a period of time ∆T is defined as:

FW (f) =
1

∆T
∗
∫ ∆T

0
FW (f, t)dt
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Observe that, as an alternative, we can define FW (f/s, t), the window freshness with
respect to a single source s ∈ S(q), in function of the window divergence relevant to query
q (as introduced in Definition 2.1.6), if |q(A(s, t))| > 0, as:

FW (f/s, t) = 1− DivA(s, q, t, Tr)

|q(A(s, t))|

Furthermore, if the aggregation query is a simple union of selectivity sel(q1) = 1, then
|q1(A(s, t))| = |A(s, t)| = Ws and the window freshness becomes:

FW (f/s, t) = 1− |new(A(s, t))|
Ws

2.4 Conclusion

In this chapter we have presented different types of feed aggregation quality measures,
notably the feed completeness and the window freshness. We discussed the divergence
measure and introduced some feed specific concepts, i.e. saturation and item loss. We
further analyzed feed completeness and window freshness measures that both estimate the
quality of the aggregation process and of the refresh strategy used by the aggregator in
terms of item loss. Feed completeness represents a refresh quality metric for long-term
feed aggregation tasks (e.g. archiving), while window freshness reflects the refresh quality
for short-term feed aggregation tasks (e.g. news reader).

We continue with discussing in chapter 3 several related works on the web crawling prob-
lem and we then specifically focus on RSS feeds refresh strategies. In chapter 4 we intro-
duce and analyze a best-effort refresh strategy specially conceived for feed crawling, that
maximizes aggregation quality (feed completeness and window freshness) while using a
minimum cost.
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Part II

Refresh Strategies
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Chapter 3

Related Work

A web crawler (or a robot) is a system that automatically collects web resources (notably
web pages) in order to create a local copy (or index). Web crawlers are a main component
of web search engines and web archives (e.g. Internet Archive [inta], Internet Memory
Foundation [intb]). Moreover, in the context of web data mining, crawlers are used to
build web data warehouses on which statistical analysis is done. And last, web monitoring
services crawl the web and notify the users of pages that match their submitted queries
(e.g. Giga Alert [gig], Google Alerts [gooa]).

The web is not a centrally managed repository of information, but rather consists of big
volumes of independent web content providers, each one providing their data that changes
continually and independently. Furthermore, the resources allocated by the content ag-
gregators (such as search engines or web data miners) are generally limited (bandwidth,
stockage capacity, web sites politeness policy). Therefore, it is impossible for the web
crawlers to capture all existent web pages and for a crawled page, to monitor it continu-
ally so to capture all changes.

This chapter discusses related work for the general problem of web crawling, with a specific
focus on refresh strategies. It is organized as follows. First, we briefly present a main issue
regarding the design of a web crawler, discussing the push and pull protocols. Then,
we introduce some key factors and objectives that impact crawling policies. We discuss
both first-time downloading strategies used for detecting and acquiring new available web
content and re-downloading policies (referred here as refresh strategies) used to crawl
already known web resources. Finally, we focus on the problem of RSS feeds crawling and
present some refresh strategies that deal with characteristic feed issues.

3.1 Push Based Notification versus Pull Based Crawling

In a general manner, content aggregators can obtain information available on the web in
two different ways. They can use a pull approach where they actively crawl the web to
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fetch new or updated information or they receive information that suits their interests
from the content providers that push it to the aggregators.

One of the earliest search services that adopted a push model is the Harvest system
[BDH+95], but this approach did not succeed on the long run. There are a number of
papers that discuss server initiated events (push), often in comparison with pull techniques.
Most of them focus on distributed publish-subscribe systems [JA06, SMPD05, RPS06,
RMP+07, CY08, ZSA09], multi-casting with a single publisher [AFZ97, FZ98, TV00] and
AJAX applications [BMvD07]. In a more recent work, [STCR10] uses a hybrid push-pull
refresh strategy for materializing users views over event feeds.

An initiative to define a push based protocol for RSS feeds has been proposed by the
PubSubHubbub [pub] open protocol for distributed publish-subscribe communication on
the Internet. The main purpose is to provide near-instant notifications of change updates,
which would improve the typical situation where a client periodically polls the feed server
at some arbitrary interval. In essence PubSubHubbub provides pushed RSS/Atom update
notifications instead of requiring clients to poll whole feeds. However, the PubSubHubbub
adoption heavily depends on whether both RSS feeds publishers and clients support the
protocol extensions, which is rarely the case. For example, [URM+11] estimates that only
2% of their 180, 000 feeds data set support the PubSubHubbub protocol.

Other researchers [OW02] have used the push protocol with a source cooperation approach,
where data sources actively notify the remote data cache servers about their changes. They
propose different types of divergence metrics and while lag is similar to our window/feed
divergence measures, these metrics are conceived for a different application context and
only partially reflect the particularities of RSS feeds.

Virtually all content providers and aggregators adopt the pull approach. Content providers
sometime exclude all or part of their content from being crawled and may provide hints
about their content, rate of change and importance. Such efforts to make web crawling
more efficient by improving the underlying protocol were made by introducing the Sitemaps
protocol [sit] that allows a site administrator to publish the list of available pages and their
last modification date. Tradeoffs between using the classical pull approach and Sitemaps
for content discovery were examined in [SS09]. Even though this protocol offers a crawler
useful information about new created pages and their changes, the crawler still has to use
the pull architecture in order to regularly get the information of its interest and thus, pull
based refresh strategies are still needed.

Both push and pull protocols have their advantages and disadvantages. When the new
content is pushed by the content providers, a big advantage is that the subscribed ag-
gregators can receive instant update notifications as soon as new content is published.
However, the problem is that the content providers must be aware of their subscribers list
and manage a trust relationship with them, which is difficult and highly unlikely in the
web’s reality. On the other hand, when the new available content is proactively pulled
from the content providers, the crawler obeys a refresh strategy that must predict the
update moments and sources and that decides when the crawler fetches the newly pub-
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lished content. The big advantage of the pull protocol usage is that content providers are
totally unaware of their subscribers. In this case, both content providers and aggregators
are independent and highly autonomous, keeping the communication protocol simple and
scalable.

3.2 Crawling Web Content

Crawling policies define an order in which some crawler visits the web content. Crawling
techniques can be compared in terms of the factors they consider and the objectives they
target.

First, depending on whether the web content has been already crawled before or not, we
can differentiate between:

• first-time downloading policies - that focus on the coverage, i.e. the fraction of
desired content that the crawler acquires successfully, and

• re-downloading policies or refresh strategies - that affect freshness1, i.e. the degree to
which the already acquired content remain up-to-date relative to the current version
of that content available online.

The tradeoff between coverage and freshness was studied in [APC03, EMT01] by combining
the two objectives into a single framework that interleaves first-time downloads with re-
downloads. The approach taken in [EMT01] focuses on the freshness problem, and folds in
coverage by treating uncrawled pages as having zero freshness value. [APC03] focuses on
ensuring coverage of important pages and in the process periodically revisits old important
pages.

Second, depending on how repeated downloads are managed, we distinguish between the
following design choices:

• batch crawling - where the sources to be downloaded are listed in a static crawl
order list without duplicates; the crawling process may be periodically stopped and
restarted in order to obtain more recent versions of the previously crawled content;
this is typically associated with first-time downloading policies, and

• incremental crawling - when each source may appear multiple times in the crawl order
list, so the crawling process is continuous and considered to be infinite; this can be
associated both with first-time downloading and re-downloading policies, since the
crawling resources are divided between downloading newly discovered content and
re-downloading previously crawled content, to balance both coverage and freshness.

A detailed comparison between batch and incremental crawling architectures is presented
in [CGM00b], where different properties are discussed, such as fixed or variable refresh

1In this chapter, the notion of freshness is used in a general sense; in the rest of the document, freshness
appears as defining a specific RSS feed quality measure, as defined in Section 2.3.
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frequency and in-place page update or page collection shadowing.

Third, some well studied factors that are widely considered in the design of a crawling
policy include:

• importance - of a piece of web content (e.g. web page, RSS feed) relative to other
pieces of content,

• relevance - of a piece of web content to the purpose served by the crawl, and

• content changes - or how the web content tends to evolve in time.

And last, we mention some other problems that must be considered in the crawler design,
such as:

• content avoidance - which is the appropriate way a crawler should detect and avoid
content that is redundant, malicious, wasteful or misleading?

• hidden or deep web - how should the web content available only by filling in HTML
forms be crawled?

• personalized content - in which manner a crawler should treat web sites that offer
personalized content to individual users?

• erased content - in the case a crawler runs out of storage space, how should it select
the pages to retire from its repository?

In the following sections we introduce selected references that are based on some of the
already discussed crawling considered factors and targeted objectives.

3.2.1 First-time Downloading Strategies

This group of techniques focuses on ordering the content for first-time download with the
goal of achieving wide coverage of the available web content. Roughly put, these strate-
gies download the web content in descending order of importance, where the importance
function reflects the purpose of the crawl.

When the goal is to cover high quality content of all types, an importance score ex-
tensively used in literature is PageRank [PBMW99] and its variations. Three published
empirical studies evaluate different ordering policies on real web data: [CGMP98, NW01,
BYCMR05]. In [CGMP98], the authors use the indegree and the PageRank of web pages to
prioritize crawling. Indegree priority favors pages with higher numbers of incoming hyper-
links. There is no consensus on prioritization by indegree: [CGMP98] finds that it works
fairly well (almost as well as prioritization by PageRank), whereas [BYCMR05] finds that
it performs very poorly. [NW01] uses breadth-first search, an appealing crawling strategy
due to its simplicity: pages are downloaded in the order in which they are discovered,
where discovery occurs via extracting links from each downloaded page. [BYCMR05] pro-
poses a crawl policy that gives priority to sites containing a large number of discovered but
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uncrawled urls. According to their empirical study, which imposed per-site politeness con-
straints, the proposed policy outperforms the other crawling policies (breadth-first search,
indegree and PageRank) toward the end of the crawl. The reason is that it avoids the
problem of being left with a few very large sites at the end, which can cause a politeness
bottleneck. In [APC03] the authors propose a crawling strategy based on an algorithm
called OPIC (Online Page Importance Computation), that implements an efficient online
method of estimating a variant of PageRank.

Another crawling purpose that is considered is to maximize the number of pages that
correspond to a set of user queries with a big search relevance impact [PO08, FCV09].
According to this argument, the goal is to crawl pages that would be viewed or clicked
by search engine users, if present in the search index. More specifically, one of the most
extensively studied form of crawling is the topical crawling, in which the pages relevant
to a certain topic or set of topics are crawled. The intuition on which topical crawling
is based on is that relevant pages tend to link to other relevant pages, either directly or
through short link chains, observation that has been verified in many empirical studies,
including [CGMP98, CvdBD99].

Given the large volume of available web content, there are several articles that use par-
allel or distributed crawling in order to maximize their throughput, having as goal the
maximization of the number of collected pages, without revisiting the same pages. This
is done by partitioning the url space such that each crawler machine is responsible for a
subset of the urls on the web. [CGM02] present multiple architectures and strategies for
conceiving parallel crawlers and study their performance. They discuss several guidelines
for efficiently implementing parallel crawling, such as the number of crawling processes
used and methods for coordinating different processes. During the crawling process, new
page urls are extracted and added to the crawling list. When the newly discovered urls
fall under the responsibility of another crawler machine, they must be forwarded and this
can be done through a shared file system [HD04], peer-to-peer tcp connections [NH01] or
a central coordination process [SS02, BP98].

3.2.2 Refresh Strategies

This group of techniques focuses on ordering the content for re-download, with the goal of
achieving high freshness. This property measures the degree to which the already acquired
content remain up-to-date relative to the current version of that content available online.

Freshness may be measured in different ways. A very popular one is binary freshness, also
known as obsolescence: if a cached element is identical to its live online copy, then it is
considered fresh and it is stale otherwise (freshness is the reverse of staleness).

One of the first studies of freshness maximization was done by [CLW98]. A key observation
was that a refresh strategy that crawls a page proportionally to its change frequency (in
this case, modeled by a homogeneous Poisson process) can be suboptimal. [CGM00a,
CGM03a] propose an optimal refresh strategy based on the Lagrange multipliers [Ste91]
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optimization method. In these works, a famous counterintuitive result was obtained: a
uniform crawl strategy (where all pages are crawled with the same frequency) is superior
to the proportional one (where a page is crawled proportional to its change frequency).
Furthermore, their optimal crawling strategy may never revisit pages that change too
often. The intuition is that the crawling resources (bandwidth) needed to keep weakly
synchronized a fast changing page can be better used to keep strongly synchronized the
pages that change slower for obtaining higher freshness scores. The same goal is also aimed
by [WSY+02], with the difference that they no longer use a homogeneous Poisson page
change model, but a quasi-deterministic page change model in which page update events
are nonuniform in time and the change distribution is a priori known. The authors of
[EMT01] do not make any particular assumption about the page change evolution model,
but they rather use an adaptive approach that estimates and adapts the page change
frequency on the fly.

Continuous freshness measures typically classify a content element as being ”fresher” than
others. As a first example, [CGM03a] introduces the age of an element as the amount
of time the real and the cached copy of the element have been different. They propose
a refresh strategy that minimizes age. Content-based freshness measures are introduced
in [OP08], where the degree of change is reflected directly by the changes in the page
content. Fragment staleness (they use the reverse of the freshness) is estimated by the
Jaccard set distance on the component fragments of a page. In addition to characterizing
a page by its update frequency, they also introduce the longevity of a page, as the lifetime
of page fragments that appear and disappear in time. The principle of their best effort
refresh strategy is also based on the Lagrange multipliers [Ste91] optimization method,
but they use a variant that employs a utility function. This solution avoids computing the
differential equations system of the classical Lagrange method. This same method was
first presented in [OW02] in the context of cache synchronization with source cooperation
and push protocol and it also represents an inspiration source for our two steps refresh
strategy for RSS feeds introduced in chapter 4. For the case when the page revisitation
purpose is to maintain the index of a search engine, [PO05] proposed a user-centric method
that assigns weights to individual content changes, based on how this impacts the ranking
of the page.

If the crawl purpose is to capture as many individual content updates as possible, then the
refresh strategy goal is to maximize completeness. This is specific to applications such as
web archiving or temporal data mining analysis. In this sense, a first algorithm was pro-
posed in [PRC03]. In a subsequent work [PDO04], a more general algorithm is introduced
that supports a flexible combination of freshness and completeness optimization.

3.3 Crawling RSS Feeds

A refresh strategy specially conceived for crawling RSS feeds is proposed in [SCC07],
based on the Lagrange multipliers [Ste91] optimization method. The challenge for the
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RSS aggregator is to quickly retrieve new postings in order to minimize the delay from
the publication of the postings in an RSS feed to their appearance at the aggregator. In
a subsequent work [SCH+07], a monitoring strategy based on the users previous access
patterns is introduced as part of a personal information manager system. It helps a user
monitor its subscribed RSS feeds by recommending him relevant articles.

Another feed monitoring approach that takes into account the feed update frequency and
also its content is proposed by [RCYT08]. They introduce a profile model for the content
of a feed and use their monitoring policy in order to reach their purpose: maintain dynam-
ically channel profiles on the Web. For that, they use reinforcement learning (Boltzmann
learning) to set the feed monitoring rate combined with novel content detection.

Some less elaborated order based feed refresh strategies without explicit bandwidth usage
constraints are also studied in the research literature. One example is [ABP10], where RSS
feeds are given different priorities to be refreshed. The RSS feed priority score depends on
the expected number of newly published items and on its number of subscribers. Another
example is [BGR06], that proposes different types of refresh strategies: one is the adaptive
TTL policy [GS96] fitted to feed polling and another one refreshes a feed depending on the
expected number of newly published items. They also explore hybrid polling strategies
that switch between different strategy types. The strength of their approach resides in
the elaborate change models they use. [RUM+11, URM+11] propose a minimum delay
polling policy. The intuition behind it is to fetch a newly published item as soon as it is
published in the feed (the refresh frequency is equal to the feed update rate).

3.4 Conclusion

In this chapter we have presented different aspects of a web crawler for different types of
web content, focusing especially on web pages and RSS feeds. We started with comparing
the push and pull protocols, as an important design feature of the web crawlers and
continued with a discussion on different factors and objectives that impact the crawling
strategies. We introduced some first-time downloading policies and then concentrated on
re-downloading policies. We classified them depending on their optimization goal and
scheduling techniques.

However, in the research literature there is no proposed refresh strategy specific to RSS
feeds that optimizes both freshness and completeness measures and also takes into consid-
eration the stream specific saturation process. Such a refresh strategy is introduced and
discussed in the next chapter.
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Chapter 4

Best Effort Refresh Strategies for
RSS Feeds

The quality of the aggregated feeds generated by a content-based feed aggregation system
depends entirely on the refresh strategy that is employed. Maximizing feed completeness
and window freshness simultaneously is challenging in certain situations, since there is
a fundamental tradeoff between them. For example, we suppose we are given a single
opportunity to fetch the publication window of a feed source. If we refresh the feed early,
we capture few newly published items, but we obtain a big freshness score. On the other
hand, if we wait a long time before refreshing the feed, we may capture more newly
published items and obtain thus a bigger completeness score, but the average freshness
score is lower than in the first case. Furthermore, if we refresh the feed even later when it
already got saturated and there are items that were published but are no longer available
in the feed publication window, both completeness and freshness scores have even smaller
values.

In this chapter, we propose a two steps best effort feed refresh strategy that privileges
window freshness while there are enough bandwidth resources available so the sources
do not get saturated and switches the focus on obtaining high completeness scores if the
available bandwidth gets limited and many sources get saturated. We prove that our feed
refresh strategy achieves maximum aggregation quality (in terms of feed completeness
and window freshness) compared with all other policies that perform an equal number of
refreshes. We also mention that our proposed refresh strategy does not need to pre compute
a fixed refresh schedule, but it is able to assign the next time moments for refreshing the
feed sources immediately prior to these time moments. This robustness property makes it
compatible with online change estimation methods for modeling the feed source publication
activity, as we propose in chapter 7, that update the source publication models ”on the
fly”.

First, we present a best effort refresh strategy based on the Lagrange multipliers method
and suitable for unsaturated sources that minimizes their time averaged divergence and
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consequently maximizes their window freshness, spending minimum bandwidth resources.
We introduce the utility function and discuss the intuition behind this best effort refresh
strategy. Next, we propose a two steps best effort feed refresh strategy that takes into
account the source saturation phenomenon and maximizes feed completeness. We also
describe an automatically adjustment algorithm for the refresh threshold parameter. And
last, we show the experimental evaluation of our two steps feed refresh strategy on simu-
lated RSS feeds data, testing its effectiveness compared to other refresh strategies and its
robustness when source publication activity is changing.

4.1 Best Effort Refresh Strategy for Unsaturated Feeds

Let S(q) = {s1, ...sk} represent a set of k sources on which query q is defined. Let
Div(si, q, t, Tri) be the stream divergence function of source si relevant to query q at time
t ≥ Tri , where Tri represents the last refresh moment of source si. We study the case
when the source feeds have not reached yet their saturation points. Since both feed and
stream divergence functions are identical up to the saturation point, in the following we
choose to talk about stream divergence function to refer to either of them, until specified
otherwise. We take into account bandwidth constraints and introduce b as the number
of sources that can be refreshed on average per time unit. Our goal is to find ∆Ti, the
optimal refresh periods of sources si ∈ S(q), such that the total time averaged divergence
is minimized. Mathematically, we can formulate our divergence minimization problem as
follows:

Problem 4.1.1. Given Div(si, q, t, Tri), find the values of ∆Ti that minimize the total
time averaged divergence Div

Div =

k∑
i=1

( 1

∆Ti
·
∫ ∆Ti

0
Div(si, q, Tri + x, Tri)dx

)
when all ∆Ti satisfy the constraint

k∑
i=1

1

∆Ti
= b.

Solution. We use the Lagrange multipliers method [Sap06] that provides a strategy for
finding the local minimum (or maximum) of a function subject to equality constraints.
According to this method, solution (∆T1, ...∆Tk) satisfies condition ∇∆Ti,τΛ(∆Ti, τ) = 0,
where τ is the Lagrange multiplier and ∇∆Ti,τΛ(∆Ti, τ) represents the gradient of the

Lagrange function Λ(∆Ti, τ) = Div + τ ·
(∑k

i=1
1

∆Ti
− b
)

.

Using the Lagrange multipliers method, the optimal solution has the property that there
is a single constant τ for all sources si, such that the total time averaged divergence Div
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takes its minimum when all ∆Ti satisfy the following equations:

∂Divi
∂∆Ti

=
τ

∆T 2
i

and (4.1)

k∑
i=1

1

∆Ti
= b (4.2)

where Divi = 1
∆Ti
·
∫ ∆Ti

0 Div(si, q, Tri + x, Tri)dx.

By developing Equation 4.1, we get:

∆Ti ·Div(si, q, Tri + ∆Ti, Tri)−
∫ ∆Ti

0
Div(si, q, Tri + x, Tri)dx = τ (4.3)

Notice that we have now a system of (k+1) equations (one Equation 4.3 for each source si
and one constraint Equation 4.2) with (k+1) unknown variables (∆T1, ...∆Tk, τ). Instead
of solving these (k + 1) equations, we will discover the values (∆T1, ...∆Tk) for a fixed τ
as follows. As the current time t advances, the optimal time moment t for refreshing si
such that ∆Ti = t−Tri can be determined online, as the time moment at which condition
in Equation 4.3 is met, for a fixed value of τ . This technique (inspired by [OW02, OP08])
is possible because the expression in Equation 4.3 monotonically increases (see Section
4.1.2) with t and ∆Ti.

We call τ a refresh threshold which controls the overall refresh rate of all sources with
respect to their divergence scores. For a high value of τ , the aggregator will refresh its
sources at a rather low rate and for low values of τ , it will refresh at higher rates. The
actual value of τ depends on the average number of sources that the aggregator is allowed
to refresh at each cycle (bandwidth constraint b) and on the update frequencies of the
sources (which also impact the evolution of the source divergence functions). In case these
remain constant in time, the value of τ corresponds to a constant non-negative value (see
Sections 4.3 and 4.4.4).

Notice that a very important advantage of using parameter τ is that this refresh strategy
is very robust, as the refresh moments can be dynamically assigned immediately prior
to these time moments, which is more adapted to a dynamical environment than a pre
computed fixed refresh schedule. This makes it compatible with online change estimation
methods for modeling the feed source publication activity, as we propose in chapter 7,
that update the source publication models ”on the fly”.

To resume, this optimal refresh strategy achieves minimal time averaged divergence com-
pared with all other policies that perform an equal number of refreshes, when a source si
is refreshed as soon as the condition in Equation 4.3 is met. We call such a strategy the
best effort refresh strategy.
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Best Effort Refresh Strategy. Let utility function Uti(si, q, t, Tri) represent the ex-
pression in Equation 4.3. Let τ be a positive constant, Div be a monotonic divergence
function and Tri represent the last refresh moment of source si. Then, at each time instant
t ≥ Tri refresh all the sources si that have an utility

Uti(si, q, t, Tri) ≥ τ (4.4)

where utility Uti(si, q, t, Tri) is defined as follows:

Uti(si, q, t, Tri) = (t− Tri) ·Div(s, q, t, Tri)−
∫ t

Tri

Div(si, q, x, Tri)dx. (4.5)

4.1.1 Utility Function

Utility function Uti(si, q, t, Tri) measured at time t, as introduced in Equation 4.5, depends
on the last refresh moment Tri of source si and of the divergence of si relevant to query q
during the time interval between Tri and t. The first term represents the product of the
time interval since the last refresh and the current divergence. The second term captures
the area under the divergence curve during the interval since the last refresh, as showed
in Figure 4.1. The overall utility function Uti(si, q, t, Tri) represents the blue shaded area
above the divergence curve between Tri and the current time moment t.

We represent in Figure 4.1 two examples of utility computed for two stream divergence
functions. For two different sources s1 and s2, we show the evolution of the stream
divergences DivF (s1, q, t, Tr1) and DivF (s2, q, t, Tr2) relevant to the same query q. The
horizontal axis represents time and we assume that both sources were last refreshed at the
same moment in time Tr1 = Tr2 = Tr.

Figure 4.1: Utility and stream divergence for s1 and s2

Both sources reach the same stream divergence value during the same time interval, be-
tween Tr and t, but with different time evolutions. Source s1 published few items until
recently and then suddenly published many items in a small interval of time. Source
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s2 published many items immediately after its last refresh moment, but has not had a
significant publication activity since then.

In Figure 4.1 source s1 diverged slowly after its last refresh and it underwent a significant
change only recently. On the other hand, source s2 diverged very quickly after its last
refresh. Since both sources have the same divergence value at time t, refreshing either
one of them at t will fetch the same number of newly published items from both of
them. Hence, we obtain the same gain in terms of feed completeness. Assuming it is
likely that both sources will have the same behavior after the next refresh in the future,
refreshing the source s1 with the highest utility function implies obtaining a more long
term benefit in terms of divergence reduction compared with refreshing s2. Differently
put, we prefer to refresh the source that is the most likely to produce a minimal time
averaged divergence score in the future. Moreover, divergence minimization generates
window freshness maximization, as the two measures can be formulated one depending on
the other, as shown in Section 2.3.

Our conclusion is similar to that found for synchronizing web pages in [CGM03a], that
given a limited refresh bandwidth, we should penalize the sources that change too often
in order to keep a high freshness score. The intuition is that refresh bandwidth is put
at better use if we keep strongly synchronized a source that diverges slowly than to keep
weakly synchronized a fast changing one. Furthermore, our conclusion also matches the
one of [SCC07] who proposes a monitoring policy for RSS feeds that minimizes delay.
As in our findings, they suggest that the retrieval time should be scheduled right after a
period of high publication activity.

4.1.2 Utility Monotonicity

As shown in Section 4.1, if the utility function increases monotonically as time increases,
there is a single time moment t when the utility value reaches the refresh threshold value τ
and it can be determined online. If we compute the time derivative of the utility function
as it is defined in Equation 4.5, we get:

∂Uti(si, q, t, Tri)

∂t
= (t− Tri) ·

∂Div(s, q, t, Tri)

∂t
.

Since the stream divergence semantics that we use has the property that it is a mono-
tonically increasing function, as discussed in Section 2.1.1, its time derivative is nonneg-
ative (∂Div(s, q, t, Tri)/∂t ≥ 0). Therefore, the utility time derivative is also nonnegative
(∂Uti(si, q, t, Tri)/∂t ≥ 0) and thus, the utility function increases monotonically with time.
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4.2 2Steps Best Effort Refresh Strategy for Saturated and
Unsaturated Feeds

The best effort refresh strategy proposed in Section 4.1 stands for monotonic divergence
functions, as it is the case of the stream divergence semantics (see the monotonicity dis-
cussion presented in Section 2.1.1). The challenge we encounter is that under limited
bandwidth it is not possible to attain stream semantics and we must take into considera-
tion the saturation phenomenon (defined in Section 2.1.1).

Maintaining stream divergence semantics becomes unrealistic and the usage of the window
divergence semantics imposes itself. As discussed in Section 2.1.1, since window divergence
is increasing monotonically until the source gets saturated and becomes non monotonic
afterwards, sources which already have reached their saturation point must be handled
separately, in order do minimize item loss.

2Steps Best Effort Refresh Strategy for Saturated and Unsaturated Feeds.
Based on these observations, we define a two steps refresh strategy as described in the
Algorithm 4.1. The first step will refresh the top-b saturated sources that have maxi-
mum positive window divergence DivA(si, q, t, Tri) > 0. If the saturated sources are not
refreshed right away and they continue publishing, there is highly possible that (more)
items get lost. Therefore, this criteria ensures that permanent items loss is minimized and,
implicitly, that the feed completeness is maximized. The following step handles the rest
of the sources (that are not saturated) by refreshing them based on the best effort refresh
strategy introduced in Section 4.1. As explained before, this refreshing criteria guarantees
divergence minimization and window freshness maximization. Since the refresh threshold
τ in Equation 4.4 corresponds to an average limited bandwidth of b refreshed sources,
threshold τ must be adjusted to the fraction of the bandwidth available after the first
step.

4.3 Refresh Threshold Adjustment

Parameter τ represents the refresh threshold which controls the global refresh rate of all
the sources with respect to their divergence scores. The actual value of τ depends on the
aggregator’s bandwidth constraints b and on the publication frequencies that characterize
the sources’ activity.

The refresh threshold adjustment algorithm achieves optimal bandwidth usage by adapting
the threshold τ to the available resources of a node and the publication activity of the
source feeds. Given constant available resources and publication frequencies of relevant
items, the value of τ converges to a non-negative value, as experimentally shown in Section
4.4.4.
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Algorithm 4.1 2Steps Best Effort Refresh Strategy for Saturated and Unsaturated Feeds

Input: b, τ , DivA(si, q, t, Tri), Uti(si, q, t, Tri)
Refreshed(t) := ∅, Saturated(t) := ∅, bsat = 0
{FIRST Step: refresh up to b saturated sources ordered by window diver-
gence DivA(si, q, t, Tri)}
for all si ∈ S(q) do

if si is at saturation point and DivA(si, q, t, Tri) > 0 then
Saturated(t) := Saturated(t) ∪ {si}

end if
end for
Refreshed(t) := topb(Saturated(t)) // refresh b saturated sources with the maxi-
mum window divergence DivA(si, q, t, Tri)
{SECOND Step: refresh unsaturated sources using refresh threshold τ}
bsat = size(Refreshed(t))
if bsat < b then

for all si ∈ S(q) do
if Uti(si, q, t, Tri) ≥ b

b−bsat ∗ τ then
Refreshed(t) := Refreshed(t) ∪ {si}

end if
end for

end if
set new refresh threshold τ value
refresh sources in Refreshed(t)

47



However, in the context of content-based feed aggregation the publication frequency of
items relevant to some query q might rapidly change in time. For example, the frequency
of news items that talk about the UEFA football championship may vary depending on the
real time UEFA events. Every four years, before and especially during the championship,
there is constant publication activity and even information bursts on this subject, therefore
the divergence and utility values of an aggregator that monitors this type of news will be
high and the τ refresh threshold must adapt to these changes. Thus there is no single
constant value for the refresh threshold that would be optimal all the time.

We consider a refresh threshold value τ specific to an aggregator, common to all its sub-
scriptions. Any randomly chosen initial values of τ can be used, since the algorithm will
adapt it to the optimal one. If the system parameters change, the algorithm is designed
to adjust the threshold value τ dynamically so it converges to a new global best value of
the refresh threshold τ .

The limited resources of an aggregator are represented by the bandwidth constraint b:
the average number of sources that the aggregator is allowed to refresh in the unit time.
Suppose that the aggregator has selected b′ sources to refresh, then the aggregator will (i)
increase the value of τ if it used more resources than available on average (b′ > b) and it
will (ii) decrease τ if the available bandwidth has been exploited below some percentage
p ∈ (0, 1] (b′ < p · b). τ doesn’t change otherwise (p · b ≤ b′ ≤ b). Details of this refresh
threshold adjustment algorithm are described in the Algorithm 4.2.

The value of τ is decreased by a factor θ ∈ (0, 1), by setting: τ = θ · τ , the decrease
parameter θ controlling how aggressively the node gives priority for more feed sources
to be refreshed. Similarly, the value of τ is increased with a Θ > 1 factor: τ = Θ · τ .
The increase parameter Θ reflects how quickly the aggregator n decides to slow down the
refresh rate of the sources. Experimental results on the convergence of τ are presented in
Section 4.4.4.

Algorithm 4.2 Refresh Threshold τ Adjustment

Input: b, b′ = size(Refreshed(t)), p ∈ (0, 1], θ ∈ (0, 1), Θ > 1
if b′ > b then
τ = Θ · τ // increase τ

else if b′ < p · b then
τ = θ · τ // decrease τ

else
do nothing

end if
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4.4 Experimental Evaluation

In this section we present the experimental evaluations of the effectiveness of our refresh
strategy algorithm based on simulated RSS feeds data.

4.4.1 Parameter Settings

The simulation environment used to perform our experiments is PeerSim [pee], a Java-
based engine for testing peer-to-peer protocols. We constructed a cycle-based environment
with an aggregator node that applies a query q on a set of 100 feed sources S(q) =
{s1, ...s100}. Each web feed si is generated following a homogeneous Poisson process of
constant rate parameter λi, uniformly distributed in the interval [0, 6.5].

A source si is characterized by a node publication profile (as described in Section 1.6.2)
which consists in a set of keywords that describe the items published by si. The pro-
file of a source uniformly covers on average 50% of the keywords in a dictionary of size
10. An item produced by a source has associated on average 20% of the keywords in
the source publication profile. The query q of the aggregator node consists in a set of
keywords/categories in which it is interested in that represent on average 40% of the key-
words uniformly distributed in the dictionary. Under this setting, the selectivity factor
(introduced in Section 1.4.2) of an aggregation query relative to a source profile can cover
the entire range of possible values in the [0, 1] interval (1 if the query selects everything
produced by the source, 0 if it selects nothing).

The size of the all source publication windows is Ws = 10 and the aggregator node pub-
lishes all newly fetched items in which it is interested (there is no write loss). The average
number of sources that can be refreshed by the aggregator during a time cycle is defined
by the parameter b that varies in the interval (0, 100].

Since the refresh threshold setting algorithm described in Section 4.3 dynamically adjusts
the value of τ , any initial value can be used. The experiment results presented in the
following section are obtained after the value of τ was adjusted during a warmup period.
The values chosen for the decrease and increase parameters are θ = 0.95 and Θ = 1.05.
We chose small values for these parameters (τ varies of 5%) since big variations of τ may
trigger big oscillations in the number of refreshed sources at each refresh cycle and prevent
τ from converging. τ is considered to have converged to the optimal value if the aggregator
refreshes between 90% · b and b sources.

Hypothesis for Divergence and Utility

For using the 2Steps refresh strategy, we need to know how to compute the divergence
and utility function values for each source.
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Divergence Values. In a purely pull based environment it is difficult to know the
divergence function values of each source at a certain time moment, without refreshing
it and thus finding out the exact number of items the source have published since the
last refresh. In our case, window divergence relevant to a query DivA(si, q, t, Tri) depends
not only on the total number of new items generated after the last refresh of source si,
Div(si, t, Tri), but also on the selectivity of the query filter sel(q), as shown in Section 2.1.
One solution is to estimate divergence by collecting detailed statistics on the history of
source publication frequency and query selectivity. Another possible idea is to introduce a
push based or hybrid protocol, with the inconvenience that sources are not client agnostic
anymore. In our experiments we suppose that the exact divergence values for each source
and for each time moment are known as a priori information and we say that the refresh
strategies use offline knowledge.

Utility Values. The utility function takes into account the evolution of divergence over
time. Given that the exact divergence value DivA(si, q, t, Tri) is known for the source
si at time t and that si is updated according to a homogeneous Poisson process of con-
stant parameter λi, the divergence integral in Equation 4.4 is expected to be equal to∫ t
Tri

DivA(si, q, x, Tri)dx = 1
2 · (t − Tri) · DivA(si, q, t, Tri). Under these assumptions, the

utility function Uti(si, q, t, Tri) can be estimated as:

Uti(si, q, t, Tri) =
1

2
· (t− Tri) ·DivA(si, q, t, Tri).

We use here some simple offline estimation solutions, based on a priori known information,
but we further analyze and discuss in Section 7.2 several online estimation techniques of
the source publication activity, suitable for real world scenarios.

4.4.2 Comparing Strategies

In the following sections we compare the refresh strategy for scenarios with feed saturation,
as presented in Section 4.2 (the 2Steps strategy) with four other strategies. All strate-
gies are offline, since they use a priori known information about the average publication
frequency λi and the divergence value DivA(si, q, t, Tri) for each source si.

We briefly present the refresh strategies that we compare with our optimal 2Steps strategy
presented in Section 4.2:

• OnlySat refresh strategy: represents the first step of our optimal 2Steps refresh
strategy, taken separately. The aggregator refreshes only those b feed sources that
have maximum positive window divergence DivA among the sources that have
reached the saturation point.

• OnlyTau refresh strategy: represents the second step of our optimal 2Steps refresh
strategy, considered separately. The aggregator refreshes at time t only those feed
sources si that have the utility function value Uti(si, q, t, Tri) ≥ τ .
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• Uniform refresh strategy: refreshes every feed source with the same frequency
b/|S(q)| at time cycle t, where b represents the average number of sources that
can be refreshed during one time cycle and |S(q)|, the total number of feed sources
to which the aggregator is subscribed to.

• Reference refresh strategy: refreshes all feed sources at each time cycle t. This
refresh strategy may use infinite bandwidth (it is not limited by b), so it is not
directly comparable with the others. We chose to present it in order to show the
best reference values that can be obtained for the quality measures.

4.4.3 Strategy Effectiveness

In order to verify the effectiveness of our proposed policy we performed experiments com-
paring our 2Steps refresh strategy with the other strategies introduced in Section 4.4.2.

In Figures 4.2 and 4.3, each point represents the feed completeness or the window freshness
obtained for different values of b, the average number of sources that the aggregator may
refresh during one time cycle, for the different strategies (2Steps, OnlySat, OnlyTau,
Uniform, Reference). The exact results for the circled cases are shown in Table 4.1.
The metrics are plotted depending on the total cost, measured as the total number of
refresh requests done during 100 cycles simulations.

Figure 4.2: Feed completeness

When the aggregator is restricted to refresh few sources (for relatively small values of
b ∈ (0, 22]), many sources are not refreshed on time and become saturated very quickly.
In this situation, refreshing first the saturated sources (as our optimal 2Steps and the
OnlySat strategies do) generates significantly better feed completeness values than all
the other strategies. We took a sample of this behavior and represented in Table 4.1 the
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Figure 4.3: Window freshness

exact measure values circled in Figures 4.2 and 4.3 for an average bandwidth of b = 10
refresh requests per cycle. All strategies except OnlyTau use the maximal bandwidth that
corresponds to a total cost of b · 100 cycles = 1000 refresh requests.

b = 10 b = 30 b = 50

CF FW Cost CF FW Cost CF FW Cost

2Steps 0.4954 0.3671 1000 0.8691 0.7279 2854 0.9781 0.9187 4700
OnlyTau 0.4252 0.4197 982 0.8524 0.7048 2860 0.9759 0.9155 4762
OnlySat 0.4934 0.3671 1000 0.8082 0.6590 2516 0.8091 0.6625 2524
Uniform 0.2682 0.3620 1000 0.6625 0.6398 3000 0.8871 0.7863 5000

Table 4.1: Feed completeness and Window freshness

If the aggregator is allowed to refresh more sources on average (b takes values in [22, 40]),
the policy behavior changes. This constraint being more permissive, there are fewer sources
that reach the saturation point. In this case, refreshing only the saturated sources (the
OnlySat strategy) obtains poor results. Our 2Steps strategy obtains the best results, since
it takes advantage of both strategies (OnlySat and OnlyTau) for refreshing the saturated
sources and the sources with the best utility. Compared to the strategy that refreshes
based only on the source utility (OnlyTau strategy), it obtains better feed completeness
and window freshness results for a lower cost. Detailed result values for b = 30 that are
circled in Figures 4.2 and 4.3 for a total cost of 3000 are presented in Table 4.1.

For large values of the average number of sources that can be refreshed per time cycle
(b > 40), the optimal 2Steps strategy manages to refresh all the sources based on their
utility before they reach saturation. In this case, the OnlySat strategy performs poorly
and the best results for feed completeness and window freshness are achieved by the
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strategies that refresh sources based on their utility: the optimal 2Steps and OnlyTau
strategies. The exact values obtained in the case where b = 50 and circled in Figures 4.2
and 4.3 for a total cost of 5000 are presented in Table 4.1.

To sum up, as long as the bandwidth constraints are permissive enough so that the sources
do not become saturated before the aggregator gets to refresh them, the 2Steps refresh
strategy obtains maximum window freshness scores achieved with minimal bandwidth con-
sumption. When the bandwidth constraints are more restrictive and sources get saturated
before being refreshed, a refresh strategy has to choose between freshness and complete-
ness. The 2Steps refresh strategy focuses on minimizing permanent item loss and obtains
maximum feed completeness scores with minimal bandwidth usage.

4.4.4 Strategy Robustness

Using a self adaptive threshold setting algorithm for finding the optimal value of τ in
the second step of our 2steps refresh strategy makes our policy highly adjustable to the
changes of the average source publication frequency λ and of the selectivity sel(q) of the
aggregation query q.

Since τ depends on the available bandwidth and the divergence rates of the news feeds,
there is no single best value that works well all the time. In order to show the high
adaptability of the τ threshold (and consequently, of our optimal 2steps refresh strategy
robustness), we show a study on the convergence of τ in Figure 4.4.

We plotted the evolution of τ for the optimal 2steps refresh strategy when the average
number of refresh sources by time cycle is set to b = 30, for different τ initial values.
From Figure 4.4, we can see that τ always converges to the optimal value. This conver-
gence assures the robustness of our refresh strategy to changes in the publication behavior
regarding both frequency and contents of real source feeds.

4.5 Conclusion

In this chapter we have presented a two steps best effort feed refresh strategy that mini-
mizes source divergence and maximizes window freshness and feed completeness achieved
with a minimum bandwidth consumption. We started discussing the case of unsaturated
feeds and then took into account the feed specific saturation phenomenon. We experimen-
tally evaluated our proposed two steps feed refresh strategy against other refresh strategies
and discussed its effectiveness and its robustness.

We continue with introducing in chapter 5 different related works on real RSS feeds charac-
teristics, change models and online estimation methods. In chapter 6 we analyze our own
real RSS feeds data set, focusing on the temporal dimension. And we continue in chapter 7
with different change estimation models and associated online estimation methods suited
for dynamic RSS feeds.
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Figure 4.4: Tau convergence
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Part III

Data Dynamics and Online
Change Estimation
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Chapter 5

Related Work

Modern Web 2.0 applications have transformed the Internet into an interactive, dynamic
and alive information space. Most of the online web data sources are continually and
autonomously changing.For example, online shops update their pages as new products go
on sale or change their selling prices. Also, online news magazines update their front page
articles periodically whenever there are new developments.

Understanding how web resources evolve in time is important for conceiving tools designed
to ease the interaction between people and the dynamic web content. Examples include
cache managers that maintain local copies of web data, web crawlers that visit web pages
and keep updated the local index, delivery of data from RSS news feeds or the stock market,
clients monitoring online auctions or commercial web sites, status change of social network
users, collaborative web sites like Wikipedia [wika], etc.

This chapter discusses related work on web data dynamics, with a specific focus on change
modeling and estimation. It is organized as follows. First, we briefly present some main
issues regarding RSS feed data dynamics and more specifically, publication activity char-
acteristics of real RSS feed data sets. Then, we introduce a survey on existing web change
models proposed in the contexts of both web pages and RSS feeds and discuss their un-
derlying parameter estimation methods, with a focus on online estimation.

5.1 Real RSS Feeds Characteristics

Previous efforts in the statistical characterization of RSS resources [HVT+11, RUM+11,
LRS05] cover many axes of interest, such as the type, the structure and the size of feeds
and items, statistics of vocabulary words occurrences [TPF06, LAT07] and client behavior.
In this section, we focus mainly on the RSS feed publication activity analysis, broadly
discussed in two recent articles [HVT+11, RUM+11].

The empirical study presented in [HVT+11] relies on a large scale data set acquired over a 8
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months period, starting in March 2010 for the Roses French ANR project [rosa]. The data
set contains 10,794,285 items originating from 8,155 productive feeds (spanning over 2,930
different hosting sites), harvested from major RSS/Atom directories, portals and search
engines, such as syndic8 [syn], Google Reader [good], Feedmil [fee], CompleteRSS [com],
etc. Among their many interesting results is the observation that 17% of RSS/Atom feeds
produce 97% of the items of the testbed and that < pubDate > RSS element is missing in
around 20% of the items. Also, productive feeds (at least 10 items per day) exhibit a more
regular behavior with less publication bursts (and are therefore more predictable) than the
less productive ones. Feeds are classified into different source types: press (for newspapers
and agencies), blogs (for personal blogs), forums (for discussion and mailing lists), sales
(for marketing web sites), social media (for micro-blogging such as Twitter [twi], Digg
[dig], Yahoo! Groups [yah] and blogosphere) and misc (for news, medical, city/group
information, podcasts and others). The publication activity is very different from one
source type to another. Feeds from social media are distributed among productive (more
than 10 items a day) and slow (less than 1 item a day) classes. Press feeds exhibit a
moderate (between 1 and 10 items per day) activity and are more regular, while feeds
from forums, sales, blogs and misc are rather slow.

[RUM+11] studies a data set of 200,000 diversified feeds that produced 54 million items,
crawled during 4 weeks and collected by feed autodiscovery [rssb] from web pages. Con-
cerning the publication window size, around 25% of the feeds change their window size over
time and feeds may have window sizes between zero and several hundred thousands items.
A big majority (roughly 27%) of feeds have a publication window size of 10 items, but
sizes like 15, 20 and 25 items are also common. They also identified different publication
patterns, such as:

• zombie (25% of the total number of feeds) - last publication activity was a long time
ago;

• spontaneous (32%) - occasional postings, with no periodic consistency (with an av-
erage interval between postings of at least one day);

• sliced (18%) - bursting activity alternated with inactivity periods, classified in be-
tween spontaneous and constant patterns;

• constant (4%) - constant publication throughout the entire day (with interval be-
tween postings of at most 2 hours);

• chunked (3%) - items are published all at once;

• on-the-fly (0.1%) - feed content is generated on request and all entries have the
current time as their publication date.

The rest of the feeds (around 17.9%) include not parsable, unreachable or empty feeds
for which the activity patterns can not be defined. The existence of such different feed
publication patterns suggests that a refresh strategy that decides when to check the RSS
feeds for new updates should take into account their different nature, conclusion that is
fundamental for our research direction.
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5.2 Change Models

In order to efficiently interact with a dynamic web resource, one must be aware of its
update evolution in time. In this section we present different popular approaches used to
model the changes of web content, focusing especially on web pages and RSS feeds.

5.2.1 Homogeneous Poisson Process

Experiments reported in the literature [CGM03a, CGM00b] strongly indicate that the
homogeneous Poisson process is a good model for describing the temporal distribution of
updates of web resources, notably for those with average change intervals of at least several
weeks. A homogeneous Poisson process is characterized by a constant rate parameter λ
and represents a stateless and time-independent random process where events occur with
the same probability (rate) at every time point. For estimating λ, this model assumes
that the complete change history of each source is known. However, due to bandwidth
resource limitations, in reality it is difficult to observe all changes that arise on a web
page for building its complete change history. Therefore [CGM03b] proposes methods
that estimate the update frequency of a web page based on an incomplete change history.
The authors show that a web crawler could achieve 35% improvement in freshness simply
by adopting their estimators. Their analysis is based on the hypothesis that the date
of the last change or the existence of a change on a web page are known in advance for
estimation.

5.2.2 Inhomogeneous Poisson Process

On the other hand, for smaller average change intervals, researchers have shown that
the homogeneous Poisson model is no longer suited [BC00, GGLNT04]. The alternative
proposed in [SCC07] is to use a periodic (inhomogeneous) Poisson process for modeling
the publication process of RSS feeds. Their approach is based on experiments that show
that most feeds have a highly dynamic but periodic publication behavior, with daily and
weekly periodicities.

The same periodic Poisson model is also used in [BGR06]. The authors also propose an
aperiodic Poisson model by superposing a cyclic component with an acyclic one that adds
unpredictable bursts. The use of superposition has several conceptual benefits. First, it
can model both a purely cyclic model, by ignoring the burst component and a purely acyclic
model indicating no pattern. And furthermore, it separates a situation of temporary bursts
from a permanent shift in the change model.
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5.3 Online Estimation Methods

Web crawlers for web pages [CGM00a, CGM03a] or RSS feeds [SCC07, SCH+07] are based
on a change model estimating for each source its publication activity. These systems usu-
ally use offline methods, such as average values measured beforehand or learnt during an
initial learning phase with access to a complete change history and that are not contin-
uously updated. This assumption is sufficient on short term or for sources with slowly
changing and/or low rate publication activities. However, event related feed sources like
topic based news feeds or social media feeds (Twitter [twi]) may suddenly change their
publication frequency related to a particular event (e.g. twitter hashtag). This data dy-
namics leads to the necessity of continually updating the publication frequency estimation,
using online estimation techniques.

5.3.1 Moving Average

[URM+11] proposes an adaptive RSS feed polling strategy based on a set of algorithms that
predict a feed’s future update behavior. Among the proposed algorithms, they introduce
an online estimator, also adopted in [RUM+11], based on the simple moving average
method that updates continually the predicted interval between two consecutive refreshes.
Based on the idea that the recent observations are a good predictor for what happens next,
they compute the new update interval as the unweighted mean of the update intervals
between the new items fetched at the last refresh moment. If there are no newly published
items to fetch, the update interval is increased. The refresh strategy based on the moving
average estimation has been experimentally proven to perform better in terms of average
delay and bandwidth consumption in comparison with the same refresh strategy based on
other offline or fixed estimators.

5.3.2 Exponential Smoothing

Another feed monitoring approach is introduced in [RCYT08]. It dynamically maintains a
profile of each feed’s content and uses single exponential smoothing to learn the change rate
of a feed. The learning parameter that controls the tradeoff between the exploitation and
exploration effort decreases exponentially in time, using experimentally fixed parameters.
They also propose a novelty detection scheme for deciding whether a newly published item
is novel by comparing it to the profile of the feed’s content. They further integrate the
novelty detection into the monitoring strategy by learning the change rate of the novel
content of a feed using a similar exponential smoothing approach.

[ZTB+07] propose a different prediction method in the context of information filtering
(also referred to as publish/subscribe, continuous querying or information push), where
a user posts a subscription (or a continuous query) to the system to receive notifications
(using a push protocol) whenever certain events of interest take place (e.g. when a doc-
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ument that corresponds to a certain filtering condition becomes available). They further
exploit this in MAPS [ZTB+08], an information filtering system for peer-to-peer environ-
ments. They compute a node behavior prediction function based ont the likelihood that
a node publishes documents relevant to a users subscription based on time series [Cha04]
prediction methods. They use simple moving average, but also single and double exponen-
tial smoothing techniques and validate their methods on different simulated publication
behaviors.

5.3.3 Curve Fitting

In the context of web page recrawling, [OP08] introduces refresh strategies based on
content-dependent page publication models. They present one offline and two online meth-
ods to estimate the page change models. The first online method uses curve-fitting over
a generative model and the second one puts conservative bounds to dynamically adjust
refresh parameters. Both online change estimation models are based on a data structure
called change profile, which is updated at the moment of refresh and which reflects the
changes detected that occurred on a web page. The principle of the curve-fitting method is
to map a continuous divergence curve obtained from the generative homogeneous Poisson
model to the set of points obtained from the change profile data. The principle of the
bound-based method is to determine conservative divergence bounds based on the change
profile data and use them to adaptively adjust the refresh period. The refresh strategy
tested with the two online change estimation methods performs similarly, with a slightly
better performance of the curve-fitting method.

5.4 Conclusion

In this chapter we have presented different aspects of web data dynamics. We started with
some main issues regarding RSS feed data dynamics, focusing on the temporal evolution
of feed publication behavior for different RSS feed sources. We further introduced some
change models proposed in the literature both for web pages and RSS feeds evolution.
We discussed different online estimation methods that update continually the web change
models.

In the following chapters, we present our own analysis on the RSS feeds temporal evolution
characteristics that supports our subsequent work. As mentioned in [OP08] and also shown
in this chapter, ”there is little previous work” on the online refresh strategies topic. We
propose different change models adapted for the dynamic RSS feed publication activity
and their associated online change estimation methods. We further integrate and test
these online estimation models in cohesion with our previously introduced refresh strategy
for RSS feeds.
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Chapter 6

RSS Feeds Evolution
Characteristics

In order to conceive tools that interact with the dynamic web content, it is important to
know how the web resources evolve in time. Web data sources are changing autonomously
and independently as many of them are generated and managed by users of Web 2.0
applications.

We are interested to know how much new information is published daily by RSS feeds,
when exactly it is published and if there are any patterns in the publication activity. In
this chapter we propose a general characteristics analysis with a focus on the temporal
dimension of real RSS feed sources, using data collected over four weeks from more than
2500 RSS feeds.

We start by describing the way our two RSS feeds data sets are obtained. The feed publica-
tion analysis is done from three points of view: publication activity, publication periodicity
and publication shapes. First, the publication activity is concerned with the intensity of
the source publication process, classifying feeds from very slow to very productive. Second,
the publication periodicity searches for daily repetitive publication behaviors of the feed
sources. And third, the publication shapes analyzes the daily publication activity forms
of the periodic feeds and classifies them in: peaks, uniform and waves.

6.1 Data Set Description

In order to better understand the problem of online change estimation of RSS feeds, we
studied two collections of real world RSS feeds focusing on their temporal dimension. Both
data sets were crawled using the RoSeS [rosa] feed aggregation system. Further details
on its architecture and acquisition module can be found in [rosb]. The two obtained data
collections are further used to emulate the publication behavior of real RSS feed sources
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and serve us as real world data to experiment on.

Data set 1 represents a selection from a large scale testbed acquired over an eight month
campaign in the context of the French ANR project Roses [rosa]. These feeds were har-
vested from major RSS/Atom directories, portals and search engines, such as syndic8.com
[syn], Google Reader [good], feedmil.com [fee], completeRSS.com [com] etc.

We selected only the feeds that publish on at least one of the main categories showed in
Figure 6.1.

Figure 6.1: Feed categories

Each category is defined by a list of keywords. For example, category ”economy” is defined
by the following list of keywords: economy, business, trade, transaction, deal, operation,
commercial, finance, market, sale, auction, euro, money, budget, crisis. We consider that
a feed publishes on a certain category if at least one of the following conditions holds:

• it has at least one keyword specific to that category in its feed categories

• it has published at least one item that contains at least one keyword specific to that
category in its item categories

• it contains at least one keyword specific to that category in the url of the feed.

We obtained 1969 RSS feeds, out of which we selected only 1658 that published at least
one item during the four week crawling period from 14 March to 10 April 2011.

Data set 2 was acquired from a manually chosen list of RSS news feeds of different online
newspaper websites, both French (such as Le Monde, Le Figaro, AFP) and international
(such as CNN, New York Times, Euro News). We obtained 1339 RSS feeds, out of which
we selected only 963 that published at least one item during the four week crawling period
from 14 March to 10 April 2011.
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6.2 Publication Activity

From the data sets described in the previous section, we collected statistics on the daily
publication frequency of the various feeds.

We group in the same activity class the feeds with similar publication frequency. In Figure
6.2 we show the distribution of feeds for various activity classes for the two different data
sets. For data set 1 (random feeds harvested from major RSS/Atom directories and
portals), the distribution shows that feeds with very slow publication activity (less than
1 item per day) are predominant and represent approximate 50%. Feeds that publish on
average between 1 and 10 items daily represent 37%. Feeds from data set 2 (news feeds
harvested from French and international online newspaper) are globally more productive:
there are less feeds with very slow publication activity (approximative 25%), while feeds
with moderate publication activity (between 1 and 10 items daily) represent the majority
(52%). For both data sets, feeds that are very productive, publishing more than 10 items
per day represent roughly 20%: 14% in case of data set 1 and 23% for the news feeds
(data set 2).

Figure 6.2: Feeds per activity class

Whereas the number of productive feeds is quite small, it has been shown in [HVT+11]
that they are the ones that produce most of the published items: 17% of RSS/Atom feeds
produce 97% of the items.

6.3 Publication Periodicity

It is widely accepted that the past change represents a good predictor of future change.
This works well especially for those types of feeds that have a foreseeable publication
activity, for example, feeds that have a daily periodicity, i.e. publish daily the same
number of items at the same hours. In this sense, measurements on real data done in
[SCC07] show that most of the daily posting rates of feed sources are stable, at least
for their data set, within the three month period they used for their experiments. But
there are also feeds whose publication behavior vary in time, both in the number of daily
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published items and in the shape of publication activity.

In order to detect changes in publication frequency, for each hour (time slot i ∈ [0, ...23])
of a day j, we logged the number of items xij published by a feed and then computed the

mean µi = 1
n

∑n
j=1 xij and the standard deviation σi =

√
1
n

∑n
j=1(xij − µi)2 for all the

n = 28 days.

As an example, in Figures 6.3 and 6.4 we represented the average (pink bars) and the
standard deviation (vertical lines) of the number of published items at different time slots,
one for each hour of the day, for a periodic and an aperiodic feed.

Figure 6.3: Periodic publication behavior

Figure 6.4: Aperiodic publication behavior

We consider that a small coefficient of variation CV value is representative for feed sources
with high periodicity.

CV =
1

24

23∑
i=0

σi
µi

where µi 6= 0

When the mean values are close to zero, the coefficient of variation becomes sensitive to
small changes in the means (approaches infinity) and this measure becomes inappropriate
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for testing sources with a low publication activity. We found out that 20% of the sources
that publish more than 10 items per day and 50% of the ones that publish more that 48
items per day have an average standard deviation to mean ratio smaller than 1 (CV ≤ 1).

6.4 Publication Shapes

We also studied the feed collection looking for different ”shapes” in the daily publication
activity. The shape of a daily publication model highly depends on the data processing
and information generation process ”behind” each feed. Some feeds may be generated by
human activity, while others may be based on some automatic publication process.

In Figure 6.5 we represented with vertical blue bars the average number of items published
at different hours of the day for different periodic source feeds. We classified the feeds in
three different categories, as shown in Figure 6.5: feeds that have peaks, usually generated
by an automatic publication robot, that have a uniform publication activity, such as in
the case of a news aggregator that continuously gathers news published around the world
and those that exhibit waves, following the regular daily schedule of a human activity.

(a) Peaks (b) Uniform (c) Waves

Figure 6.5: Publication shapes: peaks, uniform and waves

Shape Discovery Heuristic. This classification has been obtained by using a shape
discovery heuristic that automatically groups different publication activity shapes into one
of the three categories presented above: peaks, uniform or waves.

Let the publication behavior of a periodic feed source be described by different publication
frequency values λi that correspond to different time slots i (we consider that there are
N time slots; e.g. if a time slot corresponds to one hour, then N = 24). Given the feed
source publication behavior, let λavg = 1

N

∑N
i=1 λi represent the average number of items

published by the source during an hour time slot. We define two thresholds, th+ and th−
as:

th+ = ε1 · λavg where ε1 > 1

th− = ε2 · λavg where ε2 < 1

The intuitive idea is to fix the values of the two thresholds such that the time slots i that
have the publication rate λi less than the inferior threshold th− to be considered as having
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negligible / insignificant publication activity, those that exceed the superior threshold th+

to be considered as having very high activity and those that have values in between the
two thresholds as having an average activity.

The shape discovery heuristic presented in the Algorithm 6.1 starts by counting the number
of time slots i for which the publication rate λi is above the superior threshold th+ (counter
#th+) and those for which it is below the inferior threshold th− (counter #th−). Next, we
consider that a feed source publishes with peaks if it has all its publication rates λi outside
the interval [th−, th+), alternating very high with insignificant publication activity. As an
alternative, we can consider less restrictive conditions and allow a feed to be classified as
publishing with peaks if it has a big majority (e.g. 80%) of time slots i that have λi outside
the interval [th−, th+). Similarly, we label all source feeds with publication rates λi for
all time slots i (or for a big majority, e.g. 80%) inside the interval [th−, th+) as having a
uniform publication shape. All the other feeds re considered to have a publication activity
shape with waves.

Algorithm 6.1 Shape Discovery Heuristic

Input: PEAKS, UNIFORM, WAVES = sets of feeds with specific publication shapes
λi = publication frequency during time slot i of feed s
λavg = average publication frequency during a time slot
ε1 > 1, ε2 < 1
th+ = ε1 · λavg, th− = ε2 · λavg
#th+ = 0, #th− = 0
for i = 1 to N do

if λi ≥ th+ then
#th+ = #th++1 // count the number of time slots i with very high publication
activity

end if
if λi < th− then

#th− = #th− + 1 // count the number of time slots i with insignificant
publication activity

end if
end for
if #th+ + #th− == N then

PEAKS.add(feed s) // feed s alternates between very high and insignificant pub-
lication activity

else if #th+ == 0 and #th− == 0 then
UNIFORM.add(feed s) // feed s has only average publication activity

else
WAVES.add(feed s)

end if

In Figures 6.6 and 6.7 we show the distribution of feeds for various activity classes and
publication shapes for data sets 1 and 2 (news feeds). The distributions are similar for

68



the two data sets and show that feeds with very slow publication activity (columns on the
left side) tend to publish more with peaks, the uniform pattern is very much present in
feeds with very high publication activity (columns on the right side) while the wave shape
appears in feeds with low, medium and high publication frequencies.

Figure 6.6: Publication shapes per activity class - data set 1

Figure 6.7: Publication shapes per activity class - data set 2 news feeds

6.5 Conclusion

In this chapter we have presented a general characteristics analysis with a focus on the
temporal dimension of real RSS feed sources, using data collected over four weeks from
more than 2500 RSS feeds. We analyzed it from three points of view: publication activity,
publication periodicity and publication shapes. We started by looking into the intensity
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of the feed publication activity and into their daily periodicity features. We also studied
the shapes of their publication activity and discovered three characteristics shapes: peaks,
uniform and waves.

Inspired by the observations made on the real RSS feeds publication behavior, in the
next chapter we propose two change estimation models that reflect different types of
feed publication activities. Furthermore, we propose two corresponding online estimation
methods suited for dynamic RSS feeds that are continually updated in order to reflect the
changes in the real feed publication activities.
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Chapter 7

Online Change Estimation
Techniques

RSS feeds represent a typical example of highly dynamic web content that is updated
regularly. As shown in chapter 6, the type of changes are very different from one feed to
another. Some RSS feeds publish several times during one hour and others are updated
less than once a day. A good source publication model is very important to efficiently
predict when exactly the source publishes new items and therefore decide when is the
optimal moment to refresh it.

In this chapter we focus on the problem of estimating the change frequency of dynamic
RSS feeds. Our goal is to improve the refresh strategies of RSS aggregators, but other
web data processing systems like web crawlers or web data warehouses may as well benefit
from the techniques presented in this chapter. For that, we propose two online estimation
methods that correspond to different RSS publication activity models.

We start by introducing the general problem of online change estimation and emphasize
its importance. We present the single variable and the periodic publication models and
propose methods for estimating them online. We also detail a hybrid publication model
and discuss a dynamic algorithm for adjusting the value of the estimation smoothing
parameter. Experimental evaluation is done on real world RSS feeds. We analyze the
cohesion of our online estimation methods with different refresh strategies and examine
their effectiveness on feed sources with different publication behaviors.

7.1 Online Change Estimation

Large scale web applications like web search engines, web archives, web data warehouses,
publish-subscribe systems and news aggregators have to collect information from a large
number of dynamic web resources. In order to accomplish this task efficiently, these
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systems depend on appropriate source publication models for deciding when to refresh
each source in order to maximize one or several quality criteria under limited resources.
Content independent models [CGM03b] estimate the probability that a source has changed
at least n times at some time instant t, whereas content dependent models [OP08] might
include some heuristics for estimating the importance of change between two versions.

We consider the case of an RSS aggregator node which is subscribed to a collection of
sources. Let Tr represent the last time moment when source s has been refreshed by the
aggregator. We remind the definition of the (stream) divergence function Div(s, t, Tr)
introduced in 2.1.1 as the total number of new items published by the source s in the
time period (Tr, t] that were not yet fetched by the aggregator. Obviously the quality
(preciseness) of the divergence estimation is important for the quality of the corresponding
refresh strategy [CGM00a, CGM03a].

A traditional way for estimating divergence is to use the publication behavior of the source
s characterized by the time dependent publication frequency variable λ(s, t), defined as the
average number of items published by source s in some give time unit (e.g. second, minute,
etc.). Divergence can then be defined as an integral of publication frequency λ(s, t) over
time:

Div(s, t, Tr) =

∫ t

Tr

λ(s, x) · dx (7.1)

In practice, refresh strategies use a discrete time dimension, where time periods are divided
into time units of fixed size and divergence is defined by a sum of divergence estimations
for the intervals (see Section 7.2).

7.1.1 Online and Offline Change Estimation

The general refreshing process illustrated in Figure 7.1 is accomplished by (1) the refresh
strategy which uses the publication model for estimating the divergence and the next
refreshing time moment of each source and (2) the change estimator which generates
and updates the publication model. In an offline scenario we ignore the presence of the
change estimator module. The refresh strategy uses a precomputed publication model
and its update is a problem treated separately. Online estimation interleaves both tasks
and each new observation (obtained by a refresh) is used immediately for updating the
publication model.

7.1.2 Importance of the Online Change Estimation

Keeping the estimated publication frequency of a source constant over a long period of
time can represent an important source of errors if the source publication activity changes
in time.
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Figure 7.1: Online estimation

This is illustrated in Figure 7.2 showing the evolution of the real and estimated diver-
gence functions of a source during a day. Figure 7.2 compares (for a given source) the
real divergence values (red curve) with the estimated values using a constant publication
frequency (offline estimated divergence as the green curve) and the estimated values using
an adaptive publication frequency (online estimated divergence as the blue curve). In both
curves, the source is refreshed at regular time intervals which resets the divergence values
to 0.

The green estimated divergence function presented in Figure 7.2 increases with a constant
slope because it is based on a constant publication frequency (previously learnt in an of-
fline manner and not updated afterwards). Differently from this case, the blue estimated
divergence function in Figure 7.2 is computed based on a publication frequency that con-
tinuously adapts its value in time (online estimation), converging to a zero publication
frequency when the source does not publish anything and increasing as the source starts
publishing. The estimation is obviously better on average in the second case, when the
online estimated divergence curve is the closest to the real one.

Figure 7.2: Real vs. estimated divergence
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7.2 Online Change Estimation for RSS Feeds

Our approach for estimating the change rate of RSS feeds is strongly inspired from stan-
dard results in time series analysis [Cha04]. These techniques are used to predict future
time series values based on past observations and are usually based on the hypothesis
that both observations and predictions are done at constant time intervals. In our case,
observations are made at the refresh moments decided by the refresh strategy. This makes
the prediction process less precise than in the case of classical time series model usage.

We base our online estimation methods on observations of the number of occurred changes,
i.e. new items published by a feed. In the particular case of working with RSS feeds, we
could have chosen to use the specific RSS field < pubDate > in order to find out exactly
the publication date of each item. Nevertheless, we prefer to ignore this attribute for
two reasons: first, because not all feed items offer this information ([HVT+11] reports
that < pubDate > is missing in about 20% of items) and second, in order to maintain
the generality of the estimation methods, that allows them to be used in other different
contexts (e.g. web pages).

We introduce next three different publication models for RSS feeds and their corresponding
online change estimation techniques.

7.2.1 Single Variable Publication Model

Divergence Estimation

Our first publication model represents the publication frequency of a source s at time
t by a single variable, λ(s, t). Let Tr represent the time instant of the rth refresh of s
and λr = λ(s, Tr) be the change rate of source s estimated at time instant Tr. Then the
divergence of s at time instant t ∈ [Tr, Tr+1) can be simply estimated by the following
formula:

Divest(s, t, Tr) = (t− Tr) · λr

The form of the single variable publication frequency and of the divergence function are
presented in Figure 7.3.

Publication Frequency Update

Let xr+1 = Div(s, Tr+1, Tr) be the number of new items published since the last refresh
at Tr and observed at Tr+1. The newly estimated value of the publication frequency is
obtained by single exponentially smoothing the new observation with the previous esti-
mation:

λr+1 = α · xr+1

(Tr+1 − Tr)
+ (1− α) · λr (7.2)
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(a) Publication frequency (b) Divergence function

Figure 7.3: Single variable publication model

This estimation method relies on all previous observations, with exponentially decaying
weights, parameter α ∈ [0, 1] representing the smoothing constant.

7.2.2 Periodic Publication Model

Our second estimation model of publication is based on the hypothesis of periodicity. In
this case, the publication frequency of a source is described as a periodic function with
some (constant) period ∆T : λ(s, t) = λ(s, t+ ∆T ).

We use a discrete representation of the publication frequency as a table P (s) of n values,
each corresponding to a time slot [ti, ti+1), i ∈ {0, ...n−1}. Each time slot is of constant size
ti+1− ti = ∆T /n. We will call P (s) the publication model of s. Then λi(s, t) corresponds
to the (i + 1)th value in P (s) where (t mod ∆T ) ∈ [ti, ti+1) (i is the time slot covering
t). In the following we denote by λi the average publication rate of source s during time
slot i. In our experiments (Section 7.3) we use a daily publication model where ∆T = 24
hours, n = 24 time slots of 1 hour each.

Divergence Estimation

Let Tr represent the time instant of the rth refresh of s and P r(s) = {λri }, i ∈ {0, ...n− 1}
be the publication model of s estimated at time instant Tr. Then the expected divergence
of s at time instant t ∈ [Tr, Tr+1) can be estimated by the following formula where i
corresponds to the time slot containing Tr and there are k+ 1 = (dte − bTrc) · n/∆T time
slots ”covered” by the interval [Tr, t) (the definitions are illustrated in Figure 7.4):

Divest(s, t, Tr) =

∫ t

Tr

λri (s, x) · dx =

= λri (ti+1 − Tr) + ∆T /n ·
i+k−1∑
j=i+1

λr(j mod n) + λri+k(t− ti+k)
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Figure 7.4: Periodic publication model - Publication frequency

The form of a periodic publication frequency and of the divergence function are presented
in Figure 7.5.

(a) Publication frequency (b) Divergence function

Figure 7.5: Periodic publication model

Publication Frequency Update

Suppose that the aggregator refreshed some source s at some time moments Tr and Tr+1

that correspond to time slots i and i + k. At Tr+1, the aggregator fetches xr+1 =
Div(s, Tr+1, Tr) new items published since the last refresh at Tr. The intuitive idea
of the model update is to distribute the last observed items xr+1 in the time interval
[Tr, Tr+1). This distribution is done proportionally to the expected divergence Divestr+1 =
Divest(s, Tr+1, Tr) estimated using the values of λrj that correspond to the time interval

[Tr, Tr+1). We compute λr+1
j as the newly predicted value of λj that corresponds to time

slot j as follows:

λr+1
j =

{
α · λrj

Divestr+1
· xr+1 + (1− α) · λrj if j ∈ {i, ...i+ k}

λrj otherwise
(7.3)
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where α ∈ [0, 1] represents a smoothing parameter that is used to give more or less weight
to recent observations. This reestimation formula corresponds to a maximum likelihood
estimate of the publication frequencies λj based on the observation xr+1 at iteration r+1,
smoothed with the estimates at previous iteration r.

7.2.3 Hybrid Publication Model

The choice of which publication model to use for refreshing a certain source depends on
several factors, such as the type of the source publication activity. Moreover, using one
publication model to refresh a source may generate the best results, but only for a limited
period of time. A change in the source publication behavior may trigger the need to
change the publication model used by the refresh strategy to determine the next moment
that source should be refreshed.

In order to avoid such decisions that demand knowledge that is not always available,
one option is to use a hybrid publication model that dynamically switches between the
single variable 7.2.1 and the periodic 7.2.2 publication models. The principle of the hybrid
solution is composed by two steps. First, if at time moment Tr a refresh is done, the
real divergence value xr is found and both publication models are updated. The real
divergence value can be compared with the different divergence values estimated for the
two publication models, computing a divergence error function (as the one proposed in
Equation 7.4). Second, in order to determine the next refresh time moment Tr+1 of a
source, the refresh strategy takes this decision based on the publication model that had a
minimum divergence error computed at the time Tr of the last refresh.

7.2.4 Smoothing Parameter Adjustment

The smoothing parameter α that appears in the frequency update Equations 7.2 and 7.3
represents a constant taking values in [0, 1], used to give more or less weight to the most
recent observations to the detriment of the older ones. The actual value of α depends on
the type of the source, on the refresh frequency and on how close close to convergence is
the the source publication model. The weighting factors for each older data point decrease
exponentially, never reaching zero. The speed at which older observations are dampened
(smoothed) is a function of α. When α is close to 1, dampening is quick and when α is
close to 0, dampening is slow. The value of α must be chosen such that the errors between
the estimated values and the observed ones (in our case, the divergence errors) should be
minimized.

Intuitively speaking, if the estimated publication model of a source is close to the ”real”
one, the divergence errors values that are obtained should be small and, the same way,
when the estimated publication model has diverged from the real one, big divergence errors
are expected.
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Dynamical α Adjustment Heuristics. We propose a heuristic for dynamically ad-
justing the value of the smoothing parameter α that moves its value in the direction of
the divergence errors minimization.

We define first a stability indicator = n1/n2 as the ratio of the average of the most recent
n1 divergence errors to the average of the last n2 divergence errors, where n1 < n2. The
numerator reflects the errors recorded in the near past and the denominator represents the
errors observed during a sliding history window. For example, if n1 = 3 and n2 = 10, then
the stability ratio compares the most recent 3 errors with the average of errors observed
during the last 10 observations.

We consider the publication profile of a source as being stable if the stability ratio remains
approximately constant (e.g. stability ratio ≈ 1 or ≤ 1). If the publication profile is stable,
then it is converging and the smoothing parameter α can be decreased (e.g. α := α · γ1,
where γ1 < 1). Similarly, we consider that the source publication profile is unstable if the
last observed error values are increasing or in other words, if the stability ratio is bigger
than a threshold (e.g. stability ratio > 1). In case the publication profile is unstable, then
it is diverging and the smoothing parameter α can be increased (e.g. α := α · γ2, where
γ2 > 1). Furthermore, imposing some superior and inferior bounds for α restrains it from
diverging.

7.3 Experimental Evaluation

In this section, we compare the online estimation techniques that correspond to the single
value and the periodic source publication models with respect to the three classes of
feed publication shapes, e.g. peaks, uniform, waves. We evaluate their performances in
cohesion with different refresh strategies based on real RSS feeds data collected during a
four week period, introduced in chapter 6.

7.3.1 Experimental Setup

We focused our interest on feeds with a high publication activity and we selected for our
experiments three subsets of 10 feed sources each, representative for the three publication
shapes, having a publishing activity of at least 10 items per day.

We emulated the source publication activity by constructing a cycle based environment,
where a cycle corresponds to a time unit of duration 10 minutes. Furthermore, we worked
with a normalized source publication model, i.e. we did not consider anymore that a
source published x items during a certain time slot, but that it published x/N , where
N represents the total number of items published by the source during an entire day.
Working this way, we focused ourselves on estimating the shape of a source publication
activity and we avoided the influence of any strong fluctuation in terms of total number
of items published daily.
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Choosing the optimal value of the smoothing parameter α depends on the type of the
source, on the refresh frequency and on the level of convergence of the source publication
model. In each case, we chose an experimentally found value of α such that it minimizes
the divergence errors, usually using values in the [0.01− 0.2] interval.

7.3.2 Online Estimation Evaluation

In order to evaluate the different techniques for estimating online the publication frequency
of a source, we used a uniform random refresh strategy (refreshes are done at irregular
intervals of time that are uniformly distributed around a fixed average value). For example,
a source that is refreshed on average every 1 hour means that it can be refreshed with the
same probability at any time interval between 10 minutes and 2 hours. We put all sources
in the same initial conditions, initializing their publication frequencies at 0 and starting
the evaluation after an initial warm up period.

Robustness of the Periodic Publication Estimation

We tested the robustness of our periodic publication estimation, how it acts to sudden
changes in the publication behavior of the sources and how it is influenced by the refresh
frequency used by the strategy. For that, we created an artificial source by concatenating
publication activities from three sources with different publication shapes: 16 weeks of
uniform, followed by 16 weeks of peaks and followed by 16 weeks of waves.

Experiments were done using a uniform random strategy that refreshed the source every 1
hour and every 24 hours on average. We registered the estimated daily publication models
at the end of each week. We also computed a reference daily publication model as an
average done on the 7 days of source publication activity previous to the measurement
moment: λi is the average number of items published by a source in time slot i during the
previous 7 days. In Figure 7.6 we compare the reference model to the online estimated
daily publication models of the artificial source just before each change in the publication
behavior, i.e. at the end of 16th, 32nd and 48th week (time moments circled and marked
with vertical blue lines in Figure 7.7).

(a) After 16 weeks: Uniform (b) After 32 weeks: Peaks (c) After 48 weeks: Waves

Figure 7.6: Daily publication model: real vs. estimated model
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Furthermore, we show the 24-dimensional Euclidean (2-norm) distance between the real
and the estimated daily publication models after each week in Figure 7.7.

Figure 7.7: Distance between real and estimated periodic model

Figures 7.6 and 7.7 prove the bad influence of a small refresh frequency can have on the
quality of the estimation process. Convergence speed of the publication estimations are
shown in Figure 7.7: while the estimated daily publication model obtained with an average
refresh frequency of 1 hour converges rapidly towards the referenc model, the estimated
model obtained with a refresh done every 24 hours oscillates and diverges in time.

Online Estimation Quality

At each cycle t, we computed the root mean squared error of the estimated divergence
(defined in Section 7.1) for all sources si ∈ S, separately for the periodic and for the single
variable publication model:

divErr =

√
1

|S|
·
∑
si∈S

(Div(si, t, Tr)real −Div(si, t, Tr)est)2 (7.4)

Results are presented in Figure 7.8, separately for the three types of sources with different
publication shapes: peaks, uniform and waves. Each point represents the average of the
root mean squared divergence errors computed during the simulation, that were obtained
for different refresh frequencies. The values used for the refresh frequencies are shown in
hours and they range from a refresh done every 30 minutes to every 24 hours on average.

Experiments show clearly that in the case of waves, the periodic estimation obtains better
results than the single variable one in terms of minimal divergence error. Since it is more
precise, it estimates better the wavy source publication behavior, no matter how often the
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(a) Peaks

(b) Uniform

(c) Waves

Figure 7.8: Divergence error
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sources are refreshed and thus, how often the publication model is updated. In the case of
peaks, the difference between the two publication estimations is less striking. When the
sources are refreshed often and therefore the learnt periodic publication model is precise,
the periodic estimation obtains smaller divergence errors. As the sources are refreshed less
frequently, the single variable estimation becomes as good as the periodic one; this happens
for two reasons: first, the periodic model becomes less accurate and thus it diminishes its
performance and second, our feed sources exhibit their peaks at very regular intervals,
e.g. every 4 hours, as shown in Figure 6.5a. This favors the single variable publication
model when the refresh frequency is larger than the average interval in between peaks,
i.e. 4 hours. As for the uniform sources, both single and periodic publication estimations
perform similarly, with the observation that the single variable publication model should
be preferred because it is much more simple to use and update. Uniform feeds represent
57% of the feeds with high publication rate (more than 1 item published per hour), as we
observed on our real feeds data sets (chapter 6).

7.3.3 Integration of Online Estimation with 2Steps Refresh Strategy

We also integrated and tested our online estimation techniques with the optimal 2Steps
refresh strategy introduced in Section 4.2, whose efficient results highly depend on the
quality of the used publication models.

It is important to mention that we ignored the saturation problem when updating the
publication models. We chose to do that in order to help the online estimation by giving
it unbiased information as input.

As before, we evaluated the online estimation quality by measuring the divergence error
(Equation 7.4). The results obtained for the sources with different publication shapes are
similar to those obtained with the uniform random refresh strategy (see Figure 7.8).

Furthermore, we tested the effectiveness of the 2Steps refresh strategy in terms of feed
completeness and window freshness (quality measures defined in chapter 2) and present
them in Figures 7.9 and 7.10. The green curves represent the case when the 2Steps refresh
strategy uses a priori know information about the source publication models, while the red
and the blue curves reflect the results obtained by the 2Steps refresh strategy when using
online estimation techniques for the single variable and the periodic source publication
models.

When sources are refreshed very frequently (big bandwidth), both periodic and single
variable publication estimation give very good results in terms of feed completeness and
window freshness, independently of the source publication shapes. Frequent refreshes
alone assure high scores for quality measures and besides that, good convergence for both
periodic and single variable publication models. In the case of peaks, when the aggregator
refreshes rarely, sources become saturated very often and the 2Steps strategy focuses itself
on refreshing those saturated ones. Predicting when a source publishes Ws = 20 items in
the case of sources with regular peaks works well both with the periodic and the single
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(a) Peaks

(b) Uniform

(c) Waves

Figure 7.9: Feed completeness
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(a) Peaks

(b) Uniform

(c) Waves

Figure 7.10: Window freshness
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variable publication model, because in this case the precision offered by the periodic model
(that knows exactly at which point in time each item was published) is useless. All these
make that both periodic and single variable publication estimation give similar results in
terms of feed completeness and window freshness for the peaks in case of rare refreshes.
When sources are refreshed more often and there are less saturated sources, periodic pub-
lication estimation give better results. In the case of wavy publication behavior, periodic
estimation outperforms the single variable one because of the information accuracy it pro-
vides, no matter how often the sources are refreshed. For the uniform sources, the same
conclusions as for the uniform random strategy hold for the 2Steps refresh strategy.

7.3.4 Discussion

Experimental results illustrate the high influence of the used publication model together
with its corresponding estimation technique on the overall quality of the refresh process.
And vice versa, we have shown that the refresh frequency used by the strategy has an
important impact on the quality of the estimation process. Furthermore, saturation has
a highly negative impact: if refreshes are not done often enough and items are lost, the
estimation process uses inaccurate data for updating the model. In this case, a possible
solution is the separation between the estimation from the refresh process of the crawling
module, by separating the bandwidth resources needed for the two processes.

When the refresh strategy has big limitations in terms of bandwidth usage, online es-
timation does not represent a reliable solution. One viable solution is to allocate more
bandwidth resources for learning a publication profile during a limited period of time and
then to use the learnt model to refresh the sources, without updating it. This gives good
results for feeds (or queries on feeds) that do not change their publication behavior in
time, but it is not a reliable technique when dealing with highly dynamic web resources.
Moreover, several such learning periods may be repeated periodically to update the source
publication profiles. Since a refresh strategy is based on a publication model and the
estimation of the publication model depends on the refresh frequency used by the refresh
strategy, the usage of online change estimation techniques represents a challenge.

7.4 Statistical Estimation Model

In this section we present a formal method for estimating a source publication frequency
based on the maximum likelihood estimation method. We make the hypothesis that the
publication activity of a source represents a homogeneous Poisson process, characterized
by the rate parameter λ. Informally, the maximum likelihood estimator computes the
value of λ which has the highest probability of producing an observed set of events.

85



7.4.1 Homogeneous Poisson Process

If the expected number of published items in the time unit interval is λ, then the probability
that there are exactly k new items in the time interval ∆t is equal to:

Pλ(k,∆t) =
(λ∆t)k · e−λ∆t

k!

A source has a publication window of size Ws and each update appends a newly published
item and evicts the oldest item from the publication window that was appended Ws

updates earlier, such that at any given time there are only Ws items available in the
source publication window. In this case, the probability that the lifetime of an item in the
publication window is inferior to the time interval ∆t is equal to:

P (lifetime ≤ ∆t) = 1−
Ws−1∑
i=0

Pλ(i,∆t) = 1−
Ws−1∑
i=0

(λ∆t)i · e−λ∆t

i!

If source s was last refreshed at time moment Tr then the window divergence function at
time moment t is:

DivA(s, t, Tr) =

{
Ws with the probability 1−

∑Ws−1
i=0

(λ(t−Tr))i·e−λ(t−Tr)

i!

k with the probability (λ(t−Tr))k·e−λ(t−Tr)

k! ,∀k < Ws

(7.5)

7.4.2 Publication Profile

Each time the aggregator refreshes a source s at time moment Tr, it observes xr =
Div(s, Tr, Tr−1), the number of new items published since the last refresh at Tr−1. The
aggregator collects these observations into a publication profile, that consists of a sequence
of (time interval ∆Tr, divergence xr) pairs, where ∆Tr = Tr − Tr−1 represents the time
interval between two consecutive refreshes. The size of the publication profile of a source
kept by an aggregator is limited to the most recent n observations.

An example of a publication profile is: pubProfile =< (10, 5), (15, 1), (8, 3), (20, 8) >.
Supposing that time is measured in minutes, the publication profile of the source consists
of 4 consecutive observations and it indicates that it published 5 items during 10 minutes,
1 item in 15 minutes, 3 items in 8 minutes and lastly, 8 items in 20 minutes time.

7.4.3 Maximum Likelihood Estimation

We use the method of the maximum likelihood that for a fixed set of data (i.e. a source
publication profile) and an underlying statistical model (i.e. homogeneous Poisson pro-
cess), it selects the value of the model parameter (i.e. λ) that produces a distribution that
gives the observed data the greatest probability.
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We denote by L(λ|pubProfile) the likelihood of the Poisson rate parameter value λ given
the observed source publication profile pubProfile which is equal to the probability of the
observed source publication profile pubProfile given the parameter value λ:

L(λ|pubProfile) =
n∏
i=1

Pλ(xri ,∆Tri)

where Pλ(xri ,∆Tri) represents the probability of observing xri new items published during
the time interval ∆Tri and (∆Tri , x

r
i ) ∈ pubProfile.

We further compute the log-likelihood function as, using Equation 7.5:

lnL(λ|pubProfile) =
n∑
i=1

lnPλ(xri ,∆Tri)

=

n∑
i=1

ln
(λ∆Tri)

xri · e−λ∆Tri

xri !

/
s.t. xri<Ws

+
n∑
i=1

ln
(

1−
Ws−1∑
j=0

(λ∆Tri)
j · e−λ∆Tri

j!

)/
s.t. xri=Ws

The goal of our estimation method is to find the value λ of the source publication frequency
that maximizes the log-likelihood function lnL(λ|pubProfile). We do that using the
gradient descent method. We compute the gradient of the log-likelihood function and we
search the λ value for which the gradient function is zero:

∂
(
lnL(λ|pubProfile)

)
∂λ

= 0

∂
(
lnL(λ|pubProfile)

)
∂λ

=

n∑
i=1

xri ·∆Tri
λ

/
s.t. xri<Ws

+
n∑
i=1

∑Ws−1
j=0

(λ∆Tri )
j ·e−λ∆Tri

j! · λ∆Tri−j
λ

1−
∑Ws−1

j=0
(λ∆Tri )

j ·e−λ∆Tri

j!

/
s.t. xri=Ws

The actual value of the gradient
∂
(
lnL(λ|pubProfile)

)
∂λ can be computed given a certain λk

value. The iterative algorithm of the gradient descent method is presented in the Algorithm
7.1.

The algorithm starts from an initial value of λ = λ0 and updates it during several itera-
tions. Since we want to maximize the log-likelihood function, at iteration k we decrease
the value of λk if the gradient value is negative or increase it if the gradient value is pos-
itive with a term proportional to the gradient of the log-likelihood at the current point
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Algorithm 7.1 Lambda Estimation with Gradient Method

Input: λ0, ε,minLambda, stopThreshold,maxIterations
λk = λ0, k = 0

while |λ
k+1−λk|
λk

> stopThreshold AND k < maxIterations do

λk+1 = λk + ε · ∂
(
lnL(λ|pubProfile)

)
∂λ

/
λk

if λk+1 ≤ 0 then
λk+1 = minLambda

end if
k = k + 1

end while

(computed for λ = λk). We also prevent the value of λ from becoming negative by limiting
it to a minimum positive value minLambda. We iterate until at least one of the two exit
conditions are met: either the value of λ has converged (|λk+1−λk|/λk ≤ stopThreshold)
or we have exceeded the maximum number of allowed iterations.

7.5 Conclusion

In this chapter we have investigated problems related to an RSS aggregator that retrieves
information from multiple RSS feed sources automatically. In particular, we have proposed
and studied two online estimation methods that correspond to two different models of the
source publication activity. We tested the online estimation methods in cohesion with
di?erent refresh strategies. We compared these methods for different publication activity
shapes and we highlighted the challenges imposed by the application context.
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Conclusion and Future Work

As the Internet grows larger and the Web 2.0 services get more popular, the online web
content becomes more diverse and dynamic. However, such an increase in the quantity
of the new information generated every day might easily get overwhelming for the users.
This problem has been partially solved by the introduction of the RSS [rssa] and Atom
[ato] data formats, that have become the de-facto standards for efficient information dis-
semination. In this context, the role of feed content aggregators that help users manage
their subscriptions becomes even more important.

This dissertation studied some problems encountered when designing a content-based feed
aggregation system and focused on different points: the conception of optimal refresh
strategies that maximize the aggregation quality with an efficient use of bandwidth re-
sources and online change estimation techniques developed for dynamic RSS source publi-
cation models. More specifically, in this dissertation we addressed the following challenges
and proposed the following contributions.

Contributions

Content-based feed aggregation system. In chapter 1 we started by describing
RoSeS, a feed aggregation system [HAA10, HAA11] that gathers web content coming
from different online RSS feed sources, applies content-based aggregation queries and de-
livers the resulting personalized aggregated feeds to users or stores them in a database for
later reuse. We exemplified content-based aggregation queries over a set of RSS sources
as stateless continuous queries computing a filtered union of source feeds. We proposed
a feed aggregation model and discussed feeds from different points of view. We analyzed
two different semantics of a feed which can be seen either as a continuous stream or as
a limited size publication window of items. Last, we described an aggregation network
model and proposed a topology generation method inspired by the Internet structure.

Feed aggregation quality measures. For evaluating the quality of aggregated feeds,
we proposed in chapter 2 different types of aggregation quality measures: feed complete-
ness and window freshness. Both quality measures reflect item loss, but in different ways.
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Feed completeness is based on the stream semantics, characterizes long-term aggregation
processes and considers item loss as being definitive, as these items are lost forever. Win-
dow freshness is based on the window semantics and considers the aggregation process
from a short-term point of view, being concerned with temporary item loss, as these items
still can be retrieved at refresh time.

Best effort refresh strategies for RSS feeds. The refresh strategy used by a content-
based feed aggregation system impacts directly the quality of the newly generated aggre-
gated feeds. In chapter 4 we proposed a two steps best effort refresh strategy for RSS
feeds [HAA10, HAA11] based on the Lagrange multipliers method. Best effort strategies
achieve maximum aggregation quality (in terms of feed completeness and window fresh-
ness) compared with all other policies that perform an equal average number of refreshes.
While the bandwidth resources are sufficient to keep a high refresh frequency such that
feed sources do not reach their saturation point before being refreshed, our refresh strategy
maximizes both feed completeness and window freshness. As bandwidth resources become
more limited and feed sources risk saturation, our refresh strategy focuses on minimizing
permanent items loss and thus, maximizing feed completeness. Instead of solving the
equations introduced by the Lagrange multipliers method, we reformulated the solution
based on a utility function and a refresh threshold parameter, that controls the overall
refresh rate and that can be dynamically adjusted if the feed source publication behaviors
vary in time. One major advantage of our refresh strategy is that it does not need to
pre compute a fixed refresh schedule, but it is able to assign the next time moments for
refreshing the feed sources immediately prior to these time moments. This robustness
property makes it compatible with online change estimation methods for modeling the
feed activity, that update the source publication models ”on the fly”.

RSS feeds evolution characteristics. Understanding how web resources evolve in
time is important for conceiving tools designed to ease the interaction between people and
the dynamic web content. In chapter 6 we presented an analysis of general characteristics
with a focus on the temporal dimension of real RSS feed sources, using data collected over
four weeks from more than 2500 RSS feeds. More exactly, we examined the publication
activity, publication periodicity and publication shapes [HAA12], looking into how much
new information is published daily by the RSS feeds, when exactly it is published and
if there are any publication patterns. First, the publication activity is concerned with
the intensity of the source publication process, classifying feeds from very slow to very
productive. Second, the publication periodicity searches for daily repetitive publication
behaviors of the feed sources. And third, the publication shapes analyzes the daily pub-
lication activity forms of the periodic feeds and classies them in three categories: peaks,
uniform and waves.

Online change estimation techniques. Inspired by the observations made on the real
RSS feeds publication behavior, in chapter 7 we proposed two different source publication
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models that reflect different types of feed publication activities. In order to keep these
publication models up to date as source publication behaviors change, we also studied
different online change estimation techniques [HAA12, HAA11] with the particular goal
to improve the refresh strategies used by the RSS aggregators. We introduced the single
variable and the periodic source publication models and analyzed methods for estimating
them online in order to reflect the changes in the real feed publication activities. We also
detailed a hybrid publication model and discussed a dynamic algorithm for adjusting the
value of the estimation smoothing parameter. Finally, we integrated the proposed online
change estimation techniques with our best effort feed refresh strategy and tested them on
real source feeds having different types of publication shapes (peaks, uniform and waves).

We now briefly discuss some potential areas for future work and directions in which our
work may envisage expanding.

Perspectives and Future Work

There are different ways in which our proposed model can be improved, such as the current
solutions might be optimized and generalized. We also introduce a set of challenging
possibilities to validate and extend our work in different application contexts, such as
personalization applications, distributed networks and social medias.

Model extension. In this dissertation we consider the case of stateless continuous ag-
gregation queries computing a filtered union of source feeds. We can also envisage ex-
panding the class of aggregation queries we consider by adding joins among source feeds,
as described in [TATV11].

One possible way to improve the change prediction is to take into account the correlations
between different feed publication activities, if any. For example, as a scoop gets published
in a news feed, it is expected that other news feeds publish on the same topic. In this
case, we may use sampling techniques: when we want to refresh the feeds, we first check
for changes only a couple of ”sample” feeds and refresh the remainder only if the sample
feeds have changed.

We can extend our refresh strategy to take into account nonuniform refresh costs. This
is especially interesting when working in environments where the cost to refresh objects
is not uniform, possibly because they have different sizes. A possible way to account for
nonuniform refresh costs is to consider a source importance function that includes a factor
inversely proportional to the cost.

Our aggregation model and refresh strategy can also be extended by taking weights or im-
portance functions into consideration. For example, the divergence function Div(s, q, t, Tr)
that represent the total number of items relevant to query q published by the source s
in the time interval (Tr, t] may also depend on the importance of the source s and that
of the aggregation query q. On the one hand, we consider the importance of a source
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s. Its value might be fixed according to various criteria, including but not limited to
data quality, content provider authority (e.g. PageRank [BP98]), financial considerations,
probability of access and popularity reasons. On the other hand, we consider the weight
of an aggregation query q. There are multiple ways of establishing its value, many of them
based on the importance of query terms, using statistical language modeling techniques.
These weight functions can be composed to obtain an overall importance function for an
aggregation query q applied to feed source s.

Personalization applications. Furthermore, the importance functions considered may
be used in the context of the personalization applications. Besides the already mentioned
ways of fixing the weight values, one can imagine users express trust scores for different
sources and interest levels for different topics or aggregation queries that can be included
in the importance values computation.

In the same personalization context, an interesting alternative with a very practical side
is to formulate the optimization problem differently. Instead of maximizing aggregation
quality, given certain bandwidth constraints, we can allow users to express desired mini-
mum aggregation quality levels that have to be assured and for which they are willing to
pay and have as goal the bandwidth consumption minimization.

When dealing with a large number of source feeds and even more when taking user per-
sonalization into account, the optimization problem dimension grows significantly. One
possible solution to reduce costs is to benefit from the advantages of clustering [XI05]. For
example, feeds that have similar source publication profiles may be grouped in the same
cluster. All sources in the same cluster are characterized by an average source publication
profile, that results in important memory space savings. Furthermore, as the publication
profile of a source changes in time, it is likely that the source should be moved from one
cluster to another. Therefore, the clusters should be dynamically updated to reflect the
current source publication profiles.

Distributed web syndication network. Another possible direction we consider as
future work, one that opens many new possibilities, is to adapt our feed aggregator and
its refresh strategy we proposed for the client-server case to a more general context: con-
tent based feed aggregation in distributed web syndication systems. A first step in this
direction was made in Section 1.6 by introducing a feed aggregation network model and a
topology generation method, inspired by the Internet structure, that connects aggregator
nodes together in a distribution graph, based on their subscription queries. Although
our refresh strategy was conceived to maximize aggregation quality in a client-server sce-
nario, it would be interesting to study its impact in the distributed setting, when refreshes
would occur between feed aggregators on consecutive levels, with a possible cascading ef-
fect. Furthermore, the model can be enhanced by exploiting some new possibilities offered
by the distributed setting, such as introducing nodes aware of some graph based knowl-
edge or collaborative nodes that exchange useful information in order to achieve a global
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optimization goal.

Social medias. Going one step farther, we consider the context of today’s social medias
that propose advanced personalization services through user search queries and the possi-
bility to define complex score functions on a very dynamic and distributed content. The
world of social media is a very complex one, with many different available types, such as
collaborative projects (e.g., Wikipedia [wika]), blogs and microblogs (e.g., Twitter [twi]),
content communities (e.g., YouTube [you]) or social networking sites (e.g., Facebook [fac])
that can be furthermore integrated via social network aggregation platforms. Moreover,
the users can act both as producers and seekers of information and the social network,
the data and the personalized search queries can change at any moment. The challenge
in such a rich application context is to extend our model, refresh strategies and change
estimation techniques in order to optimize the synchronization of the online content and
the interaction between individuals and communities.
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Appendix A

Résumé de la Thèse en Français

Depuis son apparition il y a vingt ans, le Web a beaucoup évolué, d’un système de pub-
lication hypertexte vers une plateforme de participation et collaboration des utilisateurs
[O’R05], aussi appelée Web 2.0. Les services Web 2.0 facilitent la création et la gestion
du contenu disponible en ligne. Beaucoup d’applications Web 2.0 sont apparues pour
permettre aux utilisateurs de gérer, collaborer et partager sur le Web leurs informations
personnelles. Comme exemple nous pouvons citer les sites de réseaux sociaux pour rester
en contact avec les amis, la famille et les partenaires professionnels, les galeries en ligne
pour les photos et vidéos ou les blogs pour partager les agendas et les journaux de voyage,
comme le service de publication des blogs Blogger [bloa], l’encyclopédie en ligne Wikipedia
[wika], le partage de photos Flickr [fli], le partage de marque-pages web Delicious [del], le
site de partage social de liens web Digg [dig], le réseau social Facebook [fac] et le service
de microblogging Twitter [twi].

Cette grande accessibilité spécifique aux applications Web 2.0 a généré une grande explo-
sion de documents accessibles en ligne. En 2006, le magazine Time a présenté UGC (User
Generated Content le contenu généré par les utilisateurs) comme la ”Personne de l’Année”
[tim], faisant référence à tous les créateurs individuels de contenu en ligne qui contribuent
aux médias générés par les utilisateurs. D’autres exemples qui illustrent la dynamique en
ligne générale et la croissance rapide du contenu web incluent l’encyclopédie collabora-
tive en ligne Wikipedia [wika] qui signale qu’elle enregistre presque 8000 mises à jour par
heure pour les articles en anglais et 2000 pour ceux en français [wikb]. Après analyse de
la croissance de la blogosphère, NM Incite [nmi] a découvert plus de 181 millions de blogs
dans le monde fin 2011, quand cinq ans plus tôt, en 2006, il n’y en avait que 36 millions.
L’agrégateur de news libre Google News [goob] offre des informations agrégées à partir de
plus de 25000 éditeurs [gooc] du monde entier et de presque 4500 sites en anglais, chacun
avec sa propre activité indépendamment de la publication. De plus, il y a de nombreux
services qui offrent une surveillance et mise à jour en temps réel et une analyse des valeurs
de la bourse, domaine qui est connu pour sa nature fortement dynamique.

En raison de la croissance rapide des sources d’informations en ligne, il est difficile pour
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un utilisateur de rester informé de toutes les nouveautés du Web. Ce problème a été
partiellement résolu avec l’introduction des formats de données RSS [rssa] et Atom[ato],
devenus le standard de diffusion d’informations continues. Pour aider les utilisateurs à
accéder au contenu nouveau diffusé à travers les flux RSS auxquels ils sont abonnés et
rester à jour avec celui-ci, de nombreux agrégateurs RSS sont récemment apparus et
gagnent en popularité, comme Bloglines [blob], Google Reader [good], RSScache [rssc] ou
Technorati [tec].

L’intégration de flux RSS et Atom dans les interfaces et portails web permet aux utilisa-
teurs de rester informés et de suivre ”en direct” l’évolution de nombreux sites d’intérêt.
Pratiquement, un flux RSS est un document XML qui contient une liste d’items et la pub-
lication de chaque item correspond à un changement sur le site associé au flux RSS. Les
items dans la liste sont généralement limités aux derniers articles publiés. En s’abonnant
à des flux RSS, les utilisateurs peuvent suivre les dernières modifications sans visiter le
site et protègent aussi leur données personnelles en évitant de s’inscrire à la newsletter du
site. La Figure A.1 donne des exemples de sites typiques qui utilisent le RSS.

Figure A.1: Utilisation du RSS sur des différents types de sites web

En règle générale, il existe deux options opposées pour la diffusion d’une information d’un
serveur vers un client à travers un réseau. La première option consiste à transmettre les
informations à la demande explicite du client (mode ”pull”). La deuxième option se situe
à l’opposé : le serveur transmet les nouvelles informations au client qui a effectué une seule
demande initiale de souscription (mode ”push”). Dans le contexte du Web, le protocole
pull a été largement adopté pour plusieurs raisons. Tout d’abord, l’adoption du mode
push complique la communication, en nécessitant un ensemble de règles et de conventions
qui doivent être respectées par les fournisseurs de contenu, mais aussi par les agrégateurs.
Ainsi, en utilisant le protocole push, les fournisseurs de contenu sont forcés de maintenir
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une liste des abonnées qui peut devenir très grande avec le temps et en conséquence, très
difficile à gérer. D’un autre côté, l’utilisation des protocoles de type pull, tels que le HTTP
ou le XML-RPC, préserve la grande autonomie des fournisseurs de contenu, mais aussi des
agrégateurs. Et finalement, adopter le protocole push demande l’existence et l’entretien
d’une relation de confiance entre les fournisseurs de contenu et les agrégateurs de contenu,
qui est très difficile de gérer et très peu probable dans le Web réel. Le protocole pull
fonctionne sans que les fournisseurs de contenu soient conscients des agrégateurs abonnés.
Une discussion plus détaillée et des références d’état de l’art sur les protocoles pull et push
sont présentés dans la Section 3.1.

Quand nous examinons l’échange de messages du point de vue d’un serveur web il n’y a
pas de différence entre les flux RSS, les pages web ou toute autre ressource web. Toutes
ces ressources sont accessibles en utilisant le protocole HTTP en mode pull. Ceci signifie
en particulier que c’est le client qui doit décider quand il veut rafrâıchir une ressource
pour prendre en compte des changements éventuels. Donc les agrégateurs, ainsi que les
moteurs de recherche, affrontent le même type de défi : décider du moment optimal pour
rafrâıchir chaque ressource.

Notre travail de recherche est situé dans le contexte du projet RoSeS (Really Open Simple
and Efficient Syndication) [rosa]. Ce projet a pour objectif la définition d’un ensemble de
services de syndication de ressources web et des outils pour la localisation, l’interrogation,
la génération, la composition et la personnalisation de flux RSS disponibles sur le Web. Un
agrégateur RoSeS représente un système de partage de flux RSS dans lequel les utilisateurs
peuvent enregistrer des requêtes sur le contenu de flux RSS dont les résultats sont des
nouveaux flux RSS.

Placé dans ce contexte, l’objectif de cette thèse est d’améliorer la qualité d’agrégation
en concevant des stratégies de rafrâıchissement et des méthodes d’estimation en ligne
du changement de contenu adaptées aux sources de flux RSS hautement dynamiques.
Malgré la simplicité apparente, les systèmes d’agrégation de flux ont de nombreux défis
intrinsèques :

• Large échelle. Non seulement le Web est très grand, mais il évolue en permanence,
il en va de même pour les flux RSS disponibles sur les sites web. Par conséquent, les
agrégateurs de flux doivent supporter un débit très fort et faire face à un très grand
nombre de fournisseurs et consommateurs de contenu de type flux en obtenant une
haute qualité d’agrégation.

• Contenu hautement dynamique. Comme toutes les ressources web, les flux
RSS évoluent indépendamment de leurs clients et peuvent changer soudainement
d’activité de publication. Même si un agrégateur supporte la syndication à large
échelle, il ne pourra jamais suivre tous les changements dynamiques de tous les flux.

• Décision de rafrâıchissement. Afin d’assurer le bon fonctionnement d’un agrégateur,
il doit employer une stratégie de rafrâıchissement intelligente qui décide quand
rafrâıchir chaque source de flux afin de garantir la maximisation de la qualité d’agrégation,
en utilisant un coût minimal.
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• Ressources limitées. Non seulement les crawleurs doivent respecter les politiques
de politesse pour ne pas imposer trop de charge sur les fournisseurs de contenu, mais
ils sont aussi contraints par leur propres limitations internes de ressources, tels que
la bande passante, l’espace de stockage, la mémoire ou les ressources de calcul, tout
en minimisant le coût total.

• La perte d’informations. Un flux RSS est un document XML avec les derniers
articles publiés. Le nombre d’articles est limité et une fréquence de rafrâıchissement
trop faible peut mener à la perte d’informations. Ceci ne réduit pas seulement la
qualité des résultats d’agrégation (complétude), mais rend également l’estimation
des fréquences de publications plus difficile.

• Obsolescence de l’information. Le contenu de flux RSS est souvent lié aux
événements du monde réel et la valeur informative des articles publiés se dégrade avec
le temps. Une stratégie de rafrâıchissement optimale employée sur un agrégateur
de flux devrait être capable de retrouver rapidement le contenu publié récemment,
pour garder un niveau élevé de frâıcheur d’agrégation.

• Connaissances incomplètes. La nature dynamique du contenu web mène à la
nécessité de mettre à jour en continu l’estimation de la fréquence de publication, en
utilisant des techniques d’estimation en ligne. Vu que les modèles de publication des
sources sont mises à jour seulement au moment du rafrâıchissement, les estimateurs
en ligne doivent pouvoir travailler avec des connaissances incomplètes sur l’historique
de changements des données, parce qu’ils peuvent ne pas savoir exactement combien,
quand et à quelle fréquence une source produit de nouveaux articles.

• Intervalles d’estimation irréguliers. Il y a pleins d’applications web dans lesquelles
les sources de données ne sont pas rafrâıchis à intervalles de temps réguliers. Le
moment précis d’accès est décidé par la stratégie de rafrâıchissement, conçue pour
optimiser certaines mesures de qualité en utilisant un coût minimal. Les intervalles
irréguliers de rafrâıchissement et l’historique incomplet des changements rendent
très difficile le processus d’estimation.

Contributions

Dans cette thèse, nous nous proposons de résoudre les défis posés aux agrégateurs RSS
décrits ci-dessus. Les principaux problèmes présentés et étudiés dans cette thèse, ainsi que
nos différentes contributions essaient de répondre aux questions suivantes :

Comment concevoir un système d’agrégation de flux basé sur le contenu et
définir ses caractéristiques principales ? Les utilisateurs d’un agrégateur RSS désirent
rester informés des dernières nouveautés sur les sujets et les sources des flux RSS auxquels
ils s’intéressent. Pour cela, ils enregistrent des requêtes d’agrégation différentes sur un
ensemble de flux RSS reflétant leurs intérêts. Les résultats des requêtes d’agrégation sont
ensuite rendus disponibles aux utilisateurs comme des flux RSS frâıchement créés. Nous
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proposons une architecture et un modèle déclaratif pour un système d’agrégation de flux
basé sur le contenu avec une sémantique précise pour les flux et les requêtes d’agrégation.

Comment évaluer la qualité d’un système d’agrégation de flux et quelles sont
les mesures de qualité adaptées ? Pour évaluer la qualité des résultats d’un système
d’agrégation, nous proposons deux mesures différentes : la ”complétude flux” et la ”frâıcheur
fenêtre”. La complétude flux évalue le taux de couverture des articles récupérés qui cor-
respondent à une requête d’agrégation. La frâıcheur fenêtre, mesurée à un certain mo-
ment, reflète la fraction des articles de flux récemment publiés qui n’ont pas encore été
retrouvé. Une frâıcheur fenêtre maximale montre que le flux RSS résultat d’une requête
d’agrégation est à jour avec toutes ses sources de flux RSS. Les mesures qualitatives pro-
posées (la complétude flux et la frâıcheur fenêtre) ont été conçues pour décrire la qualité
des flux produits dans le cadre d’un système d’agrégation flux basé sur le contenu.

Quand est-ce que le crawleur d’un système d’agrégation de flux doit rafrâıchir
les sources de flux RSS et qu’est-ce qui rend une stratégie de rafrâıchissement
optimale ? Nous proposons une stratégie de rafrâıchissement ”best effort” basée sur
la méthode d’optimisation des multiplicateurs de Lagrange [Ste91], qui maintient un
niveau optimal de qualité d’agrégation, pour un coût moyen fixé. Cette stratégie max-
imise la complétude flux et la frâıcheur fenêtre, récupère les nouveaux articles à temps,
évitant la perte d’informations. La stratégie proposée est accompagnée d’une évaluation
expérimentale extensive, qui teste sa performance et robustesse en comparaison avec
d’autres stratégies de rafrâıchissement.

Comment caractériser l’activité de publication d’un flux RSS ? Pour mieux com-
prendre le comportement de publication des flux RSS réels, nous proposons une analyse des
caractéristiques générales qui se concentre sur la dimension temporelle des sources réelles
de flux RSS, en utilisant des données collectées pendant quatre semaines et provenant de
plus de 2500 flux RSS. Pour commencer, nous analysons l’intensité de l’activité de publica-
tion de flux et les caractéristiques de périodicité quotidienne. De plus, nous classifions les
sources de flux en fonction de trois formes différentes de publication : par pics, uniforme
et par vagues.

Comment estimer le nombre d’items publiés par un flux pendant une période
de temps ? Inspirés par les observations faites sur l’activité réelle de publication de flux
RSS, nous proposons deux modèles qui reflètent différents types d’activités de publication
de flux. De plus, nous étudions deux méthodes d’estimation en ligne qui correspondent
aux modèles de publication mis à jour en continu pour suivre les changements d’activités
réelles de publication de flux. Nous présentons une évaluation expérimentale des méthodes
d’estimation en ligne intégrées à différentes stratégies de rafrâıchissement et nous analysons
leur efficacité sur des sources avec différentes activités de publication.
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Organisation du Mémoire

Ce mémoire est organisé comme suit. Le Chapitre 1 introduit quelques notions fon-
damentales du domaine de l’agrégation de flux basée sur le contenu. Nous décrivons
l’architecture de notre système d’agrégation pour mieux comprendre les méthodes pro-
posées et nous introduisons un modèle formel d’agrégation de flux basée sur le contenu.
Le Chapitre 2 définit deux mesures de qualité orientées agrégation : la complétude flux et
la frâıcheur fenêtre. Nous expliquons le problème de saturation spécifique aux flux RSS
et nous présentons une mesure de perte d’information. Le Chapitre 3 détaille le problème
général de crawling web, en introduisant quelques facteurs clés et objectifs ciblés par les
crawleurs web qui influencent leurs stratégies de crawling. Nous nous focalisons ensuite
sur le problème spécifique du rafrâıchissement de flux RSS et nous présentons différentes
approches proposées dans la littérature sur les stratégies de rafrâıchissement de flux. Le
Chapitre 4 propose une stratégie de rafrâıchissement ”best effort” qui maximise la qualité
d’agrégation (la complétude flux et la frâıcheur fenêtre) avec un coût moyen fixé d’avance.
A la fin du chapitre, nous présentons les expériences qui testent notre stratégie en com-
paraison avec d’autres stratégies de rafrâıchissement.

Dans le Chapitre 5 nous décrivons un modèle d’activité de publication de flux RSS. Ensuite
nous examinons des modèles de changements du Web proposés pour les pages web et pour
les flux RSS. Nous comparons aussi différentes méthodes d’estimation de changements du
Web et nous nous concentrons sur les méthodes d’estimation en ligne. Le Chapitre 6 intro-
duit une analyse approfondie de flux RSS réels, avec un accent sur la dimension temporelle
de leur activité de publication. Nous nous sommes intéressés à l’activité, la périodicité et
les formes de publication. Le Chapitre 7 propose deux modèles pour estimer le nombre
d’items publiés par un flux pendant une période de temps, ainsi que des méthodes pour
mettre à jour ces modèles d’estimation suivant l’activité réelle de flux. Nous présentons
une évaluation expérimentale des méthodes d’estimation en ligne.

Enfin le chapitre de conclusion résume nos différentes contributions et soulève un ensemble
de problèmes considérés comme importants pour les perspectives de recherche.
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Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller,
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