
raeval

Relational Algebra Evaluator

Version 0.2 (Beta), 20th April 2011

Basic Instructions

Contents

1. About raeval
2. Installation
3. Using the interpreter
4. Creating and loading relations - the load operator
5. More about assignment (:=)
6. Relational operators
7. The show command
8. Using the editor
9. Some facts about raeval

1. About raeval

Raeval is an interactive interpreter for relational algebra.

This means that you can load relations and then evaluate relational algebra expressions
against them and see the results on-screen.

The aim is to penetrate some of the mystery of relational algebra by allowing
experimentation.

The screenshot below shows the evaluation of the following commands:

1. relna := load “/home/nick/Desktop/testreln.csv”

2. project relna over b

3. project (select relna where b < c) over b, c, d

Explanation:

Command 1 loads a relation from a csv file into a variable called relna.

The result of the operation (i.e. the contents of the loaded relation) are displayed.

In the display, the first line shows the attribute names and the second line shows the
domain names for those attributes. Subsequent lines show each tuple.

Command 2 projects the relation in variable relna over the attribute b.

The result of the projection is displayed.

Command 3 carries out a select operation and then projects the result which is then
displayed.

Supported relational algebra operations are:

select!! ! ! ! union

project! ! ! ! intersection

join! ! ! ! ! difference

rename! ! ! ! alias

divide

times

Conditions may include () + - * / and or not < > = <= >= <> as well as attribute names
taken from the relation.

Non-relational operators are:

load! ! ! ! ! :=! (assignment)

show

In addition, the interpreter supports:

help

quit

2. Installation

Download raeval.jar from the project home.

Double click on the downloaded raeval.jar file to start the interpreter.

Alternatively, from a command line interface, type “java -jar raeval.jar”.

3. Using the interpreter

Relational algebra expressions may be typed over several lines. To move to a new line,
press the <enter> key on your keyboard.

To execute a completed expression, press <ctrl> and <enter> together.

To copy the last command, for example to correct an error, press <ctrl> and <up arrow>
together. Infinite command history is can be accessed using <ctrl><up arrow> and
<ctrl><down arrow>.

Mac users can also use the Command key in place of <ctrl>.

“help” and “quit”

To quit, type quit and press <ctrl><enter>.

To get help, type help and press <ctrl><enter>.

Help is also available for each relational operator, for example help select <ctrl><enter>

Nesting expressions

It is possible to nest relations using brackets.

For example, the following are valid expressions (assuming that the relations exist):

• project (select person where age > 100) over name, age

• project ((select person where age > 100) join address) over name, age, town

• project (select person where (age > 100) or (name = “zebedee”)) over name, age

• oldpeople := select person where age > 100

4. Creating and loading relations -- the ʻloadʼ operator

It is not possible to edit the contents of relations in raeval (except by using relational
algebra). Instead raeval uses the load command to bring relations in from a CSV (comma
separated variable) file.

CSV files can be created using a text editor or most spreadsheets.

Rules for files:

• Use a comma to separate values

• Keep all values for a tuple on the same line

• Use quotes to enclose strings (optional)

• The first line must contain the attribute names for the relation

• The second line must contain the domain names for the attributes

• Any subsequent lines contain the tuples

• Whitespace may be included to improve readibility - it will be trimmed

Some example files are included in the testdata.zip file in the downloads section of the
project homepage (http://code.google.com/p/relational-algebra/).

An example is given below for somerelation.csv:

a,! b,! c,! d
aa,! bb,! cc,! dd
1,! 2,! 3,! 4
4,! 8,! 1,! 2
1,! 2,! 1,! 4
8,! 9,! 1,! 8
5,! 4,! 7,! 9

This relation has four attributes: a, b, c and d.

These attributes are defined over domains aa, bb, cc and dd respectively.

The relation has five tuples.

When loaded, relations should be assigned to a relation variable (otherwise they will not
be available for subsequent operations).

http://code.google.com/p/relational-algebra/
http://code.google.com/p/relational-algebra/

To load a relation from a CSV file, evaluate

<relation> := load “<path for file>”

For example,

relnb := load “C:\relnb.csv”

5. More about assignment (:=)

The assignment operator is not part of relational algebra. But it allows calculated relations
to be stored for further computation. This improves the range of experimentation that can
be achieved.

To use assignment evaluate

<relation> := <relation>

For example,

tom := select harry where secretagents > 5

dick := tom

harry := project harry over codewords, secretagents

The assignment operator performs a deep copy so that the new relation that is stored is a
separate and independent copy of the donor relation.

If the result of an expression is not assigned it will be evaluated, displayed and then
discarded.

6. Relational operators.

The following example expressions give an indication of how to use the remaining
relational operators. The examples assume the existence of two relations named relna
and relnb. They may have been loaded from disk or created using assignment of an
earlier result.

Each relation contains the same attributes (a, b, c and d) and the same domains - they are
therefore ʻunion compatibleʼ.

Examples of expressions involving relational operators:

select relna where (a > 1) and (b > 5)

select relnb where a >= 4 and d <> “aardvark”

select relna where (a > 1) or ((b > 5 and c <> 9))

result := project relna over a

project relna over a, b, c

result := select (project relna over a, b) where a >= b

relna join relnb

relna rename (a as newa)

relna rename (a as newa, b as newb)

result := relna union relnb

select (relna union relnb) where c > 5 or a < 3

relna intersection relnb

result := project (select (relna intersection relnb) where d = “wolf”) over b, d

relna difference relnb

result := relna difference (select relna where a > 5)

relna times relnb

result := relna times relnb

(select relna where d <> “wolf” and d <> “aardvark”) times relnb

divide relna by relnb

(relna times relnb) divide relnb

7. The show command

The show command can be used to check the contents of a relation variable.

For example,

result := select relna where c > 2

Then,

show result

8. Using the editor

The editor can be used to create and amend relations without the need to use CSV files.
However, the editor does have the ability to load and save files to disk using CSV if you
wish.

The editor window showing a relation being amended:

To begin an editor session evaluate:

! edit <relation>! ! (a relation name must be provided)

For example,

! edit myrelation

To create a new relation, provide a relation name that does not already exist.

The edited (or created) relation will only be brought back to the when the Accept button is
clicked. Clicking Cancel will discard all changes and return to the interpreter. This is the
case even if the relation has been loaded or saved during the edit session.

The editor will not allow a relation to be accepted if it has blank values for any attribute
name, domain name or tuple value. If this is an attempted then a warning dialog will be
displayed and the editor session will continue. The editor will accept duplicate tuples, but
the duplicate will be removed from the relation that is returned to the interpreter.

The following menu options are available within the editor:

File - Open File: opens a dialog box to identify a CSV file to load.
File - Save: save to CSV file where file name already known.
File - Save As: opens a dialog box to identify a CSV file to save (will be overwritten).
File - Close: cancels the edit and returns to the interpreter.

Insert - Insert Attribute Left - create a new column for an attribute
Insert - Insert Attribute Right - as above
Insert - Insert Tuple Above - create a new row for a tuple
Insert - Insert Tuple Below - as above

Insert commands operate relative to the current selected value (shown in red). Click a
value to select.

A ʻNew Tupleʼ row is provided at the bottom of the relation. Clicking in the indicated value
will auto create a new tuple at the bottom as a shortcut to insert below.

Delete - Delete Attribute - removes the attribute column which is currently highlighted.
Delete - Delete Tuple - removes the tuple that is currently highlighted.

It is not possible to use the interpreter whilst the editor window is open.

9. Some facts about raeval

Raeval is open source and released under the permissive Apache 2.0 license.

Copyright 2011 Nick Everitt. Licensed under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. You may
obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

It is distributed as an executable JAR (Java Archive) file.

Basic testing has been completed successfully on Windows, Mac and Linux based
machines.

The project home is code.google.com/p/relational-algebra/

All of the functionality exposed by the interactive interpreter is coded in the Relation class.
This class can be re-used and the source code is available at the project home.

The author of raeval is Nick Everitt, nicholaseveritt@gmail.com -- all feedback gratefully
received.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
mailto:nicholaseveritt@gmail.com
mailto:nicholaseveritt@gmail.com

